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Good Microarray Studies Have
Clear Objectives

e Class Comparison

— Find genes whose expression differs among
predetermined classes

 Class Prediction

— Prediction of predetermined class (phenotype)
using information from gene expression profile

e Class Discovery

— Discover clusters of specimens having similar
expression profiles

— Discover clusters of genes having similar
expression profiles



Class Comparison and Class
Prediction

* Not clustering problems
e Supervised methods



Class Prediction

Predict which tumors will respond to a
particular treatment

Predict which patients will relapse after a
particular treatment




Microarray Platforms for
Developing Predictive Classifiers

e Single label arrays
— Affymetrix GeneChips

e Dual label arrays using common reference
design
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e X, =expression of gene I in specimen from
case K

* For single label arrays, expression is
based on fluorescence intensity of gene |
In specimen from case k

* For dual-label arrays, expression is based
on log of ratio of fluorescence intensities of
gene 1 In specimen from case k to that for
common reference specimen



Class Prediction Model

Given a sample with an expression profile vector x of
log-ratios or log signals and unknown class.

Predict which class the sample belongs to

The class prediction model is a function f which maps
from the set of vectors x to the set of class labels {1,2} (if
there are two classes).

f generally utilizes only some of the components of x (i.e.
only some of the genes)

Specifying the model f involves specifying some
parameters (e.g. regression coefficients) by fitting the
model to the data (learning the data).



Components of Class Prediction

* Feature (gene) selection
— Which genes will be included in the model

o Select model type

— E.g. Diagonal linear discriminant analysis,
Nearest-Neighbor, ...

o Fitting parameters (regression coefficients)
for model
— Selecting value of tuning parameters



Class Prediction # Class Comparison

 Demonstrating statistical significance of prognostic
factors is not the same as demonstrating predictive
accuracy.

e Statisticians are used to inference, not prediction

e Most statistical methods were not developed for p>>n
prediction problems



Gene Selection

* (Genes that are differentially expressed among the
classes at a significance level o (e.g. 0.01)

— The o level is selected only to control the number of genes in the
model
» For class comparison false discovery rate is important
« For class prediction, predictive accuracy is important



Estimation of Within-Class
Variance

o Estimate séparately for each gene
 Assume all genes have same variance
 Random (hierarchical) variance model

— Wright G.W. and Simon R. Bioinformatics19:2448-2455,2003

— Inverse gamma distribution of residual variances

— Results in exact F (or t) distribution of test statistics with
increased degrees of freedom for error variance

— For any normal linear model



Gene Selection

« Small subset of genes which together give
most accurate predictions
— Combinatorial optimization algorithms
« Genetic algorithms

 Little evidence that complex feature
selection is useful in microarray problems
— Failure to compare to simpler methods

— Some published complex methods for
selecting combinations of features do not
appear to have been properly evaluated



Linear Classifiers for Two
Classes

I(ﬁ)zzwixi

X = vector of log ratios or log signals
F = features (genes) included in model
w. = weight for 1'th feature

decision boundary I(x) > or <d



| inear Classifiers for Two Classes

* Fisher linear discriminant analysis
W _ y I S -1

— Requires estimating correlations among all genes
selected for model

— y = vector of class mean differences
e Diagonal linear discriminant analysis (DLDA)
assumes features are uncorrelated

e Compound covariate predictor (Radmacher)
and Golub’s method are similar to DLDA



| inear Classifiers for Two Classes

e Support vector machines with inner
product kernel are linear classifiers with
welights determined to separate the
classes with a hyperplain that minimizes
the length of the weight vector



Support Vector Machine

minimize » w;
i

subject to y; (w'x"? +b)>1

where y; = +1 for class 1 or 2.



When p>>n

It Is always possible to find a set of
features and a weight vector for which the

classification error on the training set Is
Zero.

* \Why consider more complex models?



Myth

o Complex classification algorithms such as
neural networks perform better than
simpler methods for class prediction.



o Artificial intelligence sells to journal
reviewers and peers who cannot
distinguish hype from substance when it
comes to microarray data analysis.

 Comparative studies have shown that
simpler methods work as well or better for
microarray problems because they avoid
overfitting the data.



Other Simple Methods

Nearest neighbor classification
Nearest k-neighbors

Nearest centroid classification
Shrunken centroid classification



Nearest Neighbor Classifier

e To classify a sample in the validation set as
being in outcome class 1 or outcome class 2,
determine which sample in the training set it's
gene expression profile is most similar to.

— Similarity measure used is based on genes
selected as being univariately differentially
expressed between the classes

— Correlation similarity or Euclidean distance
generally used
o Classify the sample as being in the same

class as it's nearest neighbor in the training
set



Evaluating a Classifier

* Fit of a model to the same data used to develop
It Is no evidence of prediction accuracy for
Independent data
— Goodness of fit is not prediction accuracy

e Demonstrating statistical significance of
prognostic factors is not the same as
demonstrating predictive accuracy

 Demonstrating stability of identification of gene
predictors is not necessary for demonstrating
oredictive accuracy




Split-Sample Evaluation

e Training-set
— Used to select features, select model type, determine
parameters and cut-off thresholds
e Test-set

— Withheld until a single model is fully specified using
the training-set.

— Fully specified model is applied to the expression
profiles in the test-set to predict class labels.

— Number of errors is counted

— ldeally test set data is from different centers than the
training data and assayed at a different time



Leave-one-out Cross Validation

« Omit sample 1

— Develop multivariate classifier from scratch on
training set with sample 1 omitted

— Predict class for sample 1 and record whether
prediction Is correct



Leave-one-out Cross Validation

* Repeat analysis for training sets with each
single sample omitted one at a time

e @ = number of misclassifications
determined by cross-validation

e Subdivide e for estimation of sensitivity
and specificity



Evaluating a Classifier

e The classification algorithm includes the
following parts:
— Determining what type of classifier to use
— Gene selection

— Fitting parameters
— Optimizing with regard to tuning parameters

 If a re-sampling method such as cross-validation
IS to be used to estimate predictive error of a
classifier, all aspects of the classification
algorithm must be repeated for each training set
and the accuracy of the resulting classifier
scored on the corresponding validation set




* Cross validation is only valid if the test set is not
used in any way In the development of the
model. Using the complete set of samples to
select genes violates this assumption and
Invalidates cross-validation.

« With proper cross-validation, the model must be
developed from scratch for each leave-one-out
training set. This means that feature selection
must be repeated for each leave-one-out
training set.

* The cross-validated estimate of misclassification
error is an estimate of the prediction error for
model fit using specified algorithm to full dataset



Prediction on Simulated Null Data

Generation of Gene Expression Profiles

* 14 specimens (P; is the expression profile for specimen i)
* Log-ratio measurements on 6000 genes

* Pi ~ MVN(O, lgop0)

 Can we distinguish between the first 7 specimens (Class 1) and the last 7
(Class 2)?

Prediction Method
« Compound covariate prediction (discussed later)

« Compound covariate built from the log-ratios of the 10 most differentially
expressed genes.
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Prediction Error Estimation: A Comparison of
Resampling Methods
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ABSTRACT

Muotivation: In genomic studies, thousands of lealures are
collected on relatively few samples. One of the goals of
these studies ks to build classfiers to predict the outcome of
future obeervations. There are three inherent steps to this
procass: feslure selection, model selection, and prediction
aesessmant. With & focus on prediction assessment, We Gomm-
pare seversl methods for sstimating the rue’ prediction error
of a pradiction maodal in the presence of fzature selaction.
Results: For small studies where features are selected from
thousands of candidates, the resubstitution and simple split-
sample estmates are sericusly biased. In these small samp-
les, laava-ona-cut (LOOCY), 10-fold cross-validabon [TV,
and the 632+ boolstrap have the smallest bias for diago-
nal discriminant analysis, nearest naighbor, and dassification
Irgas, LOOQCY and 10-fold GV have tha smallast bias for linear
discriminant analysis. Additionally, LOOGV, 5- and 10-fald GV,
and tha B32+ bootslrap have tha kowes! maan square arror.
Tha B32+ bootstrap is quite bigsad in small sampls sizes
with strong signal 1o nolse ratics. Differences in perfarmanca
amaong resampling methods are reduced as the number of
specimens available increase.

Avnilability: A complete compilafion of resulls in lables and
figurez ja available in Molinaro o ol (2005). R code for
simulalions and analyses s available from the authors,
Contact: Bnnette molinarofiiyele edu

1 INTRODUCTION

In genemic expeniments one frequently encounters high
dimensional data and small sample sizes, Microarrays simul-
tnecusly moendior expression levels For several thonsands
of genes. Proteomic profiling swdies using SELDI-TON
(surfave-enlanced bser desorption and soniztion ame-of-
flight] measure size and charge of prodeins and prodein frag-
ments by mass spectroscopy, and resuli moup o 15,000
imbengity levels at prespecified miass values for each spectrom.
Sample sizes m such experiments are rypically less than LK.

"l wlioim ml\:uq-mmlalm-‘ seculid be midrcasad

T iy studies observations are knowin o belong to pre-
determined classes and the task is to build predictors or
classifiers for new observations whose class is unknown
Deciding which genes or proteomic measurements o include
in the prediction is called fepiure sefeciton ami is 8 eru-
cial step in developing a elass predictor, Including wo many
noisy varahles reduces accuracy of the prediction and may
lead 1o over-fiting of data, resulting in promising bt oflen
mon-reproducible results {Ranscholf, 20041

Amnodher difficulty is model selection with numerous clas-
sification models available. An imporant siep in reporing
resulis is assessing the chosen model™s error rale, or gene-
rilizability. Inothe absence of independent validation dais, a
commimon approach o estimatng predicine aceuracy s hased
o somme form of resampling the onginal dita, e, cross-
walidation. These techmiques divide the data mto o learming
sel and o test set and range n complesity from the popular
learning-test splnt o v-fold cross-vahdation, Monte-Carlo -
fold cross-valdaton, and boststrap resampling. Few compa-
risons of standard resampling methods have been performed
to e, aved all of them exhibit limitations that make their
eanclusions inapplicable o mest genomic settings, Farly
comparizons of resampling techniques in the leerature are
focussed on madel selection as opposed o prediction errer
estimation {Breiman and Spector, 1992, Burman, 1989), In
two recent assessments of resampling technigues for error
estimation {Braga-Meto and Dougherty, 2004, Efron, 2004),
feature selection wis nod included as part of the resampling
procedures, causing the conclusions 1o be inapproprisie for
the high-dimensional seiing.

We have performed an extengive comparnison of resamp-
ling methods 1o estimate prediction error using simadated
{large signal to noise mtio), microgmay {intermediate signal
1 noise miio) and proteomic data (low signal 10 nolse rtio ),
encompassing incregsing sample sizes with large numbers
of features. The mmpact of festure selection on the perfor-
mance of vanous cross validatien owethods s highlighted.
Ihe results elucidate the "best” resampling fechnigues for

18 Dixiord University Press 2005



Simulated Data
40 cases, 10 genes selected from 5000

Method Estimate Std Deviation
True 078

Resubstitution .007 016
LOOCV .092 115
10-fold CV 118 120
5-fold CV 161 127
Split sample 1-1 .345 .185
Split sample 2-1 205 184
.632+ bootstrap 274 .084
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Arrayid  |Class label : F i : {Meighhors |Centroid | : Covariate
genes in | Predictor Analysis {Meighhor {Machines :
; Correct? |Correct? Predictor
classifier | Correct? Correct? | Correct?
Correct? =
1 Brain Bhab 1 | AT/HET 55 YES TES | YES TES TES TES TES
2 Brain Rhah 2 | ATET 53 YES YES [ vES YES YES | YES VES
3 Brain Bhab 3 | AT/ET 56 YES TES | YES TES TES TES TES
4 Brain Bhab 4 | ATHET g2 YES TES | YES TES TES TES TES
5 Brain Rhab 5 | ATRT | 56 YES | v¥ES YES | YES YES | YES | ¥ES
i Brain Bhab 6 | AT/HET T4 YES TES YES TES TES TES TES
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Permutation Distribution of Cross-
validated Misclassification Rate of a
Multivariate Classifier

 Randomly permute class labels and repeat the
entire cross-validation

 Re-do for all (or 1000) random permutations of
class labels

 Permutation p value is fraction of random
permutations that gave as few misclassifications
as e in the real data



Gene-Expression Profiles In
Hereditary Breast Cancer

cDNA Microarrays _
* Breast tumors studied:

7 BRCAL1+ tumors
8 BRCA2+ tumors
7 sporadic tumors

9
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 Log-ratios measurements of
3226 genes for each tumor
after initial data filtering

RESEARCH QUESTION
Can we distinguish BRCA1+ from BRCA1- cancers and BRCA2+ from
BRCAZ2- cancers based solely on their gene expression profiles?




Classification of BRCA2 Germline

Mutations
Classification Method LOOCYV Prediction
Error
Compound Covariate Predictor 14%
Fisher LDA 36%
Diagonal LDA 14%
1-Nearest Neighbor 9%
3-Nearest Neighbor 23%
Support Vector Machine 18%
(linear kernel)

Classification Tree 45%




Common Problems With Cross
Validation

* Pre-selection of genes using entire dataset

 Failure to consider optimization of tuning
parameter part of classification algorithm

—Varma & Simon, BMC Bioinformatics 7:91
2006



Does an Expression Profile Classifier
Predict More Accurately Than Standard
Prognostic Variables?

* Not an issue of which variables are
significant after adjusting for which others
or which are independent predictors

— Predictive accuracy and inference are
different



Survival Risk Group Prediction

Define algorithm for selecting genes and constructing
survival risk groups

Apply algorithm in LOOCYV fashion to obtain predicted
survival risk groups

Compute Kaplan-Meier curves for cross-validated risk
groups

Compute permutation p value for separation of cross-
validated Kaplan-Meler curves

Compare separation of cross-validated Kaplan-Meier
curves to separtion of K-M curves for standard clinical
staging

Available in BRB-ArrayTools

— http://linus.nci.nih.gov/brb



Sample Size Planning
References

K Dobbin, R Simon. Sample size
determination in microarray experiments
for class comparison and prognostic
classification. Biostatistics 6:27-38, 2005

K Dobbin, R Simon. Sample size planning
for developing classifiers using high
dimensional DNA microarray data.
Biostatistics (In Press)



Sample size as a function of effect size (log-base 2 fold-change between classes divided by standard

deviation). Two different tolerances shown, . Each class is equally represented in the population.
22000 genes on an array.
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External Validation

 Should address clinical utility, not just
predictive accuracy

« Should incorporate all sources of
variability likely to be seen in broad clinical
application



o Targeted clinical trials can be much more
efficient than untargeted clinical trials, If
we know who to target



Developmental Strategy

Develop a diagnostic classifier that identifies the
patients likely to benefit from the new drug

Develop a reproducible assay for the classifier
Use the diagnostic to restrict eligibility to a
prospectively planned evaluation of the new
drug

Demonstrate that the new drug is effective in the
orospectively defined set of patients determined

oy the diagnostic




Develop Predictor of Response to New Drug

Patient Predicted Responsive

Patient Predicted Non-Responsive

N

New Drug

Control

Off Study




Evaluating the Efficiency of Strategy (I)

Simon R and Maitnourim A. Evaluating the efficiency of targeted
designs for randomized clinical trials. Clinical Cancer Research
10:6759-63, 2004.

Maitnourim A and Simon R. On the efficiency of targeted clinical
trials. Statistics in Medicine 24:329-339, 2005.

reprints and interactive sample size calculations at
http://linus.nci.nih.gov/brb
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Evaluating the efficiency of targeted designs for randomized clinical trials and Supplement by Richard Simon and Aboubakar Maitournam. (Clinical Cancer Research
10:6759-6763, 2005)
pc | |
gamma | |
deltal | |
delta0 | |
alpha |0.05 |
power |D.E|D |
pc = probability of "response" for control arm
e (B proportion of patients who are classifier negative (i.e. less
9 responsive to new treatment
dahat B improvement in response probability for new treatment in classifier
positive patients
deltao = improvement in response probability for new treatment in classifier
negative patients
alpha = twe-sided significance level
© MNIH, 2006 —
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Sample Size Calculation: Survival or Time-to-Event Endpoint™

7| Median survival of the control group (years)
or
|7| Proportion surviving beyond — years
Ii Total accrual rate (both marker pesitive and negative patients/year)

l | Percent of patients marker negative
I | % Reduction in hazard for treatment of marker positive patients

| | % Reduction in hazard for treatment of marker negative patients

_ Years of follow-up following end of accrual

0.05 | Two-sided significance
080 | Desired power for targeted design

*Assumes exponential distribution of survival for treatment and control group within marker positive and marker
negative subsets. Uses formulas in Rubinstein, Gail & Santner (T Chronic Disease 34:469-79, 1981) for targeted
design and simulation for untargeted design. Simulation uses Poisson process assumptions of Rubinstein et al.

© MIH, 2006
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Guiding Principle

 The data used to develop the classifier
must be distinct from the data used to test

hy
Su

notheses about treatment effect Iin
nsets determined by the classifier

Developmental studies are exploratory

— Studies on which treatment effectiveness
claims are to be based should be definitive
studies that test a treatment hypothesis in a

patient population completely pre-specified by
the classifier
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Selected Features of BRB-ArrayTools
linus.nci.nih.gov/brb

Multivariate permutation tests for class
comparison to control number and proportion
of false discoveries with specified confidence
level

Fast implementation of SAM
Extensive annotation for genes

Find genes correlated with censored survival
while controlling number or proportion of false
discoveries

Gene set comparison analysis
Analysis of variance (fixed and mixed)



Selected Features of BRB-ArrayTools

e Class prediction

— DLDA, CCP, Nearest Neighbor, Nearest
Centroid, Shrunken Centroids, SVM,
Random Forests, Top scoring pairs

— Complete LOOCV, k-fold CV, repeated k-
fold, .632+ bootstrap

— permutation significance of cross-validated
error rate

« Survival risk group prediction
* R plug-ins
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