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Scientific Questions
in Pharmacogenetics

• Why do some people respond favorably to 
a particular treatment and others not?

• Who do some experience a particular side 
effect and others not?

• Why is one treatment better for some, 
another treatment better for others?

• Can genetics help explain these effects?



Multistage Sampling

• Designs that exploit information already 
collected or readily obtainable on a large 
sample to improve the cost-efficiency of 
subsample(s) for other variables

• Analyses that combine information from  
both the main study and subsamples

• Applications in 
– Epidemiology: White Am J Epidemiol 1982:115:119-28 

Breslow & Chatterjee, Appl Statist 1999;48:457-68

– Genetics: Whittemore & Halpern, Stat Med 1997; 16:153-67



Design for Studying Rare Exposures and 
Rare Diseases

• Stage I: case-control sample by Y, 
observe surrogate Z for exposure

• Stage II: subsample 2x2 cells defined by 
Y and Z and measure exposure X (and 
other covariates)

• Analysis of stage II data must adjust for 
differential sampling fractions

• Better: analyze stage I and II data jointly
White Am J Epidemiol 1982:115:119-28;



Focus on Design Issues
in Phamacogenetics

• Primary focus on interactions rather than 
main effects

• Prior knowledge about pathways targeted by 
agent under study

• Exposure (treatment) can be randomized
– Independently of genotype
– And vice-versa: genes segregate independently 

of treatment

• Unrelated individuals, not families

• Possibility of case-only designs,                          
particularly where treatment is randomized



Reasons to Consider 
Multistage Designs

• Cost-efficiency

• Opportunity to use informative sampling

• Joint analysis of data from different 
samples

• Optimization of design



Chicken or Egg?

• Start with clinical trial: add genetic 
association study to look for modifiers of 
treatment response

OR

• Start with a case-control or cohort study 
of genes: use genes to target clinical 
studies of treatment outcomes



Optimization of Designs

• Compute expected Fisher information for 
the joint analysis of main and substudy as 
a function of parameters and sampling 
probabilities

• Find sampling scheme that         
maximizes E(information),                 
subject to constraint                                      
on total cost

• Example: E(info)/Cost                                 
as function of overall sampling fraction

R = 0.25
R = 1

R = 4
R = 16

Proportion in substudy

Relative cost 
efficiency



Examples

• Candidate gene association study using 
tag SNPs

• Pathway-based study involving biomarkers

• Genome-wide association study 



Candidate Gene Studies

• A priori hypotheses about candidate gene(s)

• If functional variants known in a clinical trial:          
no need for multistage sampling ...                     
But not if starting point is a cohort study.

• Negative result could mean gene is not relevant 
or wrong variant(s) were tested

• Complete characterization would require 
sequencing of entire gene in full sample

• Focus on common variants ⇒ tagSNP approach





Multistage Sampling
for TagSNP Studies

• Small sample to characterize LD patterns and 
choose tag SNPs S

• Only tag SNPs and treatment T are tested in 
main study

• Joint analysis allows tests of untyped SNPs G

pG(Y |S,T ) = Σg pβ(Y | G=g,T ) pα(G=g | S)

• Haplotype analysis similar, but requires 
additional summation over possible haplotype 
resolutions given unphased genotypes

Thomas et al., Genet Epidemiol 2004;27:401-14



Extensions

• Multistage samples incorporating 
sequencing

• Gene-treatment interactions:          
optimize design by sampling on outcome, 
treatment, and surrogate for causal variant



Nested Genetic Study
Within a Clinical Trial

• Stage I: observe Y | T

• Stage II: sample conditional on Y,T;           
observe G | Y, T

• Likelihood is: ΠM p(Y |T)NYT × ΠS p(G|Y,T )nGYT

• Total information is: ΣM NYT iYT +  ΣS nGYT(s) iGYT

• Choose s to maximize information per unit cost

• Optimal design might sample only Y =1, T =1



InfoGxT /Cost by Sampling Fractions



Is Equal Allocation Optimal?

Sampling plan Sampling fractions ARCE
(R=2)

No subsampling (1,1,1,1) .0033

Constant sample (.086, .086, .086, .086)

(.046, .789, .076, 1)

(.051, .051, 1, 1)

(1, 0, 0, 0)

(0, 1, 0, 0)

(0, 0, 1, 0)

(0, 0, 0, 1)

Equal allocation .0064

Case-control .0063

.0024

.0036

.0044

.0044

.0071

Sample only one 
cell



Clinical Trial 
Within an Observational Study

• Stage I: observe G, Y1 (disease)

• Stage II: sample Y1=1 subjects within strata of G

assign T | G at random

observe treatment outcomes Y2 | T, G

• Optimize sampling fractions given G



Case-Only Designs

• From clinical trial, sample only responders 
or only nonresponder (whichever is rarer)

• From cohort study of T, sample only cases

• In either design, examine G-T association

• Assuming G and T are independent in 
population, G-T association in cases 
estimates GxE interaction



Counter-Matched Design

• In a cohort with T and Y :

• Match each T=1 case with a T=0 control and 
vice-versa from within Cox risk set

• Measure G on cases and CM’d controls

• Analysis is by conditional logistic regression 
with offset term for control sampling fractions

Langholz & Goldstein, Statist Sci 1996;11:35-53



Example: WECARE
• Nested case-control study of second breast 

cancer in relation to radiotherapy and DNA 
repair genes (ATM etc.)

• 700 cases of bilateral breast cancer

• 1400 controls, counter-matched on radiotherapy 
(2 treated + 1 untreated per triplet)

• Contralateral radiation doses estimated by 
phantom dosimetry

• Genotyping of ATM and other genes 

Bernstein et al. Breast Ca Res 2004;6:R199-214



Doses to the Contralateral Breast During RT 

Absorbed radiation dose (cGy) to the contralateral breast during RT is 
estimated using patient-equivalent phantoms and medical/treatment record 
information. Range limits correspond to techniques used among WECARE 
participants that resulted in the lowest and highest doses to each quadrant and 
nipple. 

Subgroup RR (95% CI)
>1.0 Gy vs. no RT

All subjects 1.3 (1.0 – 1.6)

Under age <45 at exposure
5+ y latency

2.0 (1.1 – 3.8)

Under age <40 at exposure 
5+ y latency

2.8 (1.1 – 8.8)



Role of ATM in Cellular DNA Damage Response
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Distribution of Unique Non-Silent ATM 
Variants: WECARE Study Progress
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Main Effects of ATM
Common variants RR (95% CI)

All 12 w freq > 1% 0.8 (0.6 – 0.97)

IVS 14-55T>G 0.6 (0.4 – 0.96)

IVS45-54T>C 0.2 (0.1 – 0.8)

IVS10-6T>G 0.1 (0.0 – 0.9)



ATM x Radiation Interaction



Examples

• Candidate gene association study using 
tag SNPs

• Pathway-based study involving biomarkers

• Genome-wide association study 



Pathways and Biomarkers

• Studies of many related genes, e.g.,
– Drug metabolism

– Repair of DNA damage from therapeutic radiation

• Joint analysis of all relevant genes using 
hierarchical or pharmacokinetic models

• Wish to incorporate markers of intermediate 
endpoints, e.g., urine/blood concentrations 
of metabolites, but expensive or awkward



• DG-031 is FLAP inhibitor

• Aim is to assess treatment 
effect on biomarkers of MI 
risk (CRP, leukotrienes, 
MPO)

• Restricted to carriers of 
risk variants for ALOX5AP
(87%) or LTA4H (13%)



Biomarker Dose / 
Time

Change 
(95% CI)

P

Leukotriene B4 750 mg/d 26%        
(10 – 39%)

.003

MPO 750 mg/d 12%     
(2 – 21%)

.02

500 – 750 
2 wk

16% 
(-2 – 31%)

.07

CRP
4wk post 
washout

25%     
(5 – 40%)

.02





Pathway Analysis with Biomarkers
• Notation:

G = genes
Y = outcomes
T = treatment
M = intermediate metabolite (unobserved)
B = flawed biomarker for M

• Design
– Main study (M): (G,R,Y)
– Substudy (S): (G,R,B)

• Model
– Outcomes: Pβ(Y|M)
– Measurement: Pσ(B|M)
– Metabolic: Pα(M|R,G)

G

T B

Y
M



Pathway Analysis

• Combined analysis of main study and 
substudy data

• Maximum likelihood, integrating over latent 
variable M

• or MCMC, sampling M

Conti et al., Hum Hered 2003;56:83-93
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Stratified Sampling for Biomarkers
• Optimize design by sampling subjects for 

biomarker measurements by main study 
data on T,G,Y

• Starting with a clinical trial: 
– Observe Y |T
– Sample given Y,T; observe G
– Subsample given Y,T,G; measure M

• Starting with an observational study:
– Observe Y,G (and E?)

– Sample given Y,G,E; apply T; measure M



Complex Pathways
Example: Folate

Ulrich et al., Nat Rev Cancer 2003;3:912-20
Ulrich et al., Parmacogenet 2002;3:299-314



E

G2

YX1

Z2

Folate: the Minimalist Version

X2

X3

Dietary 
folic acid

MTHFR (etc.)

5,10-MTHF

Homocystiene

Pyrimidine Synthesis
and DNA repair

Colorectal 
Cancer

G3

TS (etc.)

Homocystiene
Measurement



Topology

• How well do we really understand the 
structure of a network?

• Incorporate uncertainty in topology into 
models
– Bayesian network analysis, e.g., for expression 

(Friedman et al, J Comp Biol 2000;7:601-20)
– Basso et al, Nat Genet 2005;38:382-90

• Contribution of systems biology … at the 
opposite end of detail from molecular 
epidemiology



Stochastic Boolean Networks



Causality in Molecular Epidemiology
• We postulate a causal pathway 

from exposures E and genes G
through a sequence of 
intermediate steps X to a disease.

• We wish to test the causality of a 
particular intermediate, as 
measured by Z, on Y

• By which we mean that holding all 
other determinants of Y fixed, a 
change in X would lead to a 
change in Y

G Y

Z

X

E

Note: the focus of inference here will be
on the causality of X (not G or E) on Y, 
except as X is modifiable by E



Difficulties in Causal Inference

• Confounding

• Reverse Causation

• Pleiotropy

G Y

Z

X

E

C

W



“Mendelian Randomization”
to the Rescue!

• Instead of testing X ⇒ Y directly    
(or more realistically Z ⇒ Y ),          
test G ⇒ Z and G ⇒ Y
relationships separately

• If both are present, infer a causal 
connection  X ⇒ Y, because G is 
not subject to either confounding 
or reverse causation

• However G could have 
pleiotropic effects on Y mediated 
thru W, not X

G Y

Z

X

w



“Real” Mendelian Randomization
• Genes are not really assigned randomly 

across the population, only conditionally      
on parental mating types

• Family-based association studies (e.g., 
transmission-disequilibrium test (TDT))  
exploit this feature:

Pr(G|Y,Gpar) = pβ(Y |G ) p(G|Gpar) / pβ(Y |Gpar)

• Extension to MR:

Pr(G,X |Y,Gpar)
= pβ(Y |X ) pα(X |G) p(G|Gpar) / pα,β(Y |Gpar)



Mendelian Randomization 
in the Clinical Trials Setting

• Opportunity to randomize both the treatment T 
and the modifiers G

• Classical MR assumes G are randomly assigned 
across the population, would treat both T and G
as instrumental variables
– Models B |T,G and Y |T,G
– Infer causal connection thru M if both exist

• Real MR obtains G for parents and trial subjects
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GK + GK -Full sisters

GK + GK - GK - GK +
Offspring 
of sisters

Compare BMI:

Equivalent to a randomised 
trial to slightly higher glucose 

concentrations in utero

Double MR to Test a Randomized 
Environmental Hypothesis

(D.A. Lawlor, DAE/GDMS 2005)



Examples

• Candidate gene association study using 
tag SNPs

• Pathway-based study involving biomarkers

• Genome-wide association study



Genome-wide Association Studies

• Scan of the entire genome to search for 
genes associated with a trait (or 
interactions)

• Most scans use multistage design, using 
commercial chip (~500K SNPs) on first 
sample to identify promising associations, 
confirming them on additional samples

• Optimize design with respect to critical value 
at stage I and allocation of sample size 

Wang et al, Genet Epidemiol 2006;30:356-68



GWA for Treatment Modifiers

• Select stage I and II samples conditional 
on treatment and outcome

• Prioritize SNPs for stage II based on test 
of gene-treatment interactions
– Based on case-only or case-control 

comparisons
– Also based on main effects
– Incorporate genomic annotation in ranking





Reality Check: Sample Size Needs

• Candidate genes, pathways, genome-wide

• Therapeutic or prevention trials

• Main effects or treatment modifiers

• Power calculations by Quanto
– Gauderman, Am J Epidemiol 2002;155:478-84 (GxG)
– Gauderman, Stat Med 2002; 21:35-50 (GxE)

http://hydra.usc.edu/gxe



Candidate Treatment Modifier Gene
• Sample sizes needed to detect interaction effect 

at α = .05, 1-β = .90, single stage design
– p(T) = 0.5, MAF = 0.2 (dom), RRT|G=0 = 0.9, RRG|T=0 = 0.9

RRGxT Cases (cohort size) needed

Therapeutic
p(Y) = 0.5

Prevention
p(Y) = 0.01

0.3 271 (542) 142 (14K)

0.5 789 (1,578) 408 (40K)

0.7 2,900 (6,000) 1,513 (150K)

0.9 33K (67K) 17K (1.7M)
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Candidate Treatment Modifier Gene:
Two-Stage Design

• Consider prevention trial scenario with 
p(Y) = .01 and RRGxE = 0.5

• Nested case-control study with 1:1 
matching within treatment arms

• Somewhat greater advantage if stages I 
and II were analyzed jointly

Cohort Cases Controls

1-stage 14K 140 13,860

2-stage 27K 270 270



Randomized Trial within 
an Epidemiologic Cohort

• Cohort study: observe Y, measure G

• Challenge experiment:
sample based on Y and G,                                
assign T (randomized or crossover), 
measure acute response R

• Example: Children’s Health Study



Challenge Studies:
GSTM1 x GSTP1 in Allergic Response to DEP

Gilliland et al, Lancet 2004;363:119-25

GSTM1 GSTP1 N ΔIGE

+ I/I 2 26 
(6.7– 45)

+ I/V 3 49 
(-1.5 – 61)

– I/I 11 137 
(29 – 511)

– I/V 3 9.1 
(1.0 – 46)

GSTM1 -

GSTM1 +



Biomarker for Pathway

• Stage I: Prevention trial, assign T, observe Y

• Stage II: Nested case-control study,    
sample based on Y, T, observe G1 and G2

• Stage III: Biomarker substudy,                
sample based on Y, T, G, observe M

Cases Controls

Stage I 270 27K

Stage II 135,135 135,135

Stage III 10 x 8 = 80 10 x 8 = 80

Effect Min det r2

Y|M 1.7/SD

M|T,G 6.5%



Genome-wide Association Scan 
for Treatment Modifying Genes

• Same model parameters as for candidate 
gene study

• Two-stage genotyping strategy with 
genomewide significance level .05     
(1x10-7 per SNP) and 90% power

Cases / controls
RRGxT = 0.3 RRGxT = 0.5 Markers

Stage I 600 1700 500K

Stage II 600 1700 5K



Perspectives

• Well established statistical theory

• Increasingly used in epidemiology and 
genetics, but underdeveloped in 
pharmacogenetics

• Particularly useful for incorporating 
pharmacokinetic / pharmacodynamic
models

• Sample size requirements for detecting 
interactions are large





Nature Genetics 38, 68 - 74 (2006) 
Published online: 10 November 2005; | 
doi:10.1038/ng1692 
A variant of the gene 
encoding leukotriene A4 
hydrolase confers ethnicity-
specific risk of myocardial 
infarction
Anna Helgadottir

1
, Andrei Manolescu1, 

Agnar Helgason1, Gudmar
Thorleifsson1,



Maternal-Fetal Interactions

• Standard TDT analysis is Pr(Go |Gm,Gf,Yo=1)

• Suppose:                                                        

Pr(Yo=1|Go,Gm,Gf)  ∝ exp(β1Go + β2Gm + β3GmGo)

• Parameters β1 and β3 are estimable; β2 is not

• Instead use Pr(Go,Gm,Gf |MT,Yo=1)

• Now all three parameters are estimable,           
assuming Pr(Gm,Gf) = Pr(Gf,Gm).

No controls needed



Zm
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……
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Gn Pn

= (Vmax , Km)

Zm-1
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Contexts

• Candidate gene known to be functionally 
relevant to agent

• Biomarkers to inform about pathway

• Genome-wide search for modifier genes



Design alternatives

• Clinical trial within 
observational study
– Cohort study: sample 

based on E, store DNA, 
observe Y

– subsample based on Y,E, 
measure G

OR
– Case-control study: 

sample based on Y, 
observe E, G

– Subsample based on Y,E, 
G, assign T, observe M

• Genetic study within a clinical 
trial
– Assign T, observe Y, M
– Subsample based on Y,M,T
– Observe G

• Observational study with 
countermatching (WECARE)
– Observe T, Y
– Nested case-control sample 

based on Y, countermatching 
on T

– Observe G



ATM Gene Screening
• ATM Gene Analyses

– Conducted in 4 labs

– Staged approach: DHPLC followed by Direct 
Sequencing

– All conditions, primers standardized across 
labs

– Inter- and Intra-lab QC implemented

(Bernstein, … , Concannon, Hum Mut 2003)



• RCT for diabetes 
prevention in 3234 
overweight people with 
elevated fasting glucose

• Randomized to lifestyle 
intervention, metformin, 
or placebo

• 58% reduction in diabetes 
risk on lifestyle 
intervention and 31% 
reduction on metformin
over 3 years

• Genotyped for two 
common polymorphisms 
in TCF7L2 associated 
with NIDDM



Genetic Association Studies
in the Context of Clinical Research
• Identify and characterize genes that 

modify response to phamacologic agents 
or other interventions
– Preventive or therapeutic (phase I, II, III)

• Approaches:
– Clinical trials with genetic add-ons 
– Nested challenge or treatment studies within 

population-based observational studies
– Integrating separate observational and 

randomized studies
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