Multistage Design Options
for Pharmacogenetic Studies

Duncan C. Thomas
with
David Conti

University of Southern California



Scientific Questions
In Pharmacogenetics

Why do some people respond favorably to
a particular treatment and others not?

Who do some experience a particular side
effect and others not?

Why Is one treatment better for some,
another treatment better for others?

Can genetics help explain these effects?



Multistage Sampling

e Designs that exploit information already
collected or readily obtainable on a large
sample to improve the cost-efficiency of
subsample(s) for other variables

 Analyses that combine information from
both the main study and subsamples

 Applications in

— Epidemiology: White Am J Epidemiol 1982:115:119-28
Breslow & Chatterjee, Appl Statist 1999;48:457-68

— Genetics: Whittemore & Halpern, Stat Med 1997; 16:153-67



Design for Studying Rare Exposures and
Rare Diseases

« Stage I: case-control sample by Y,
observe surrogate Z for exposure

« Stage IlI: subsample 2x2 cells defined by
Y and Z and measure exposure X (and
other covariates)

 Analysis of stage Il data must adjust for
differential sampling fractions

 Better: analyze stage | and |l data jointly

White Am J Epidemiol 1982:115:119-28;



Focus on Design Issues
In Phamacogenetics

Primary focus on interactions rather than
main effects

Prior knowledge about pathways targeted by
agent under study

Exposure (treatment) can be randomized

— Independently of genotype

— And vice-versa: genes segregate independently
of treatment

Unrelated individuals, not families

Possibility of case-only designs, |
particularly where treatment is randomized



Reasons to Consider
Multistage Designs

Cost-efficiency
Opportunity to use informative sampling

Joint analysis of data from different
samples

Optimization of design



Chicken or Egg?

o Start with clinical trial: add genetic
association study to look for modifiers of
treatment response

OR

o Start with a case-control or cohort study
of genes: use genes to target clinical
studies of treatment outcomes



Optimization of Designs

« Compute expected Fisher information for
the joint analysis of main and substudy as
a function of parameters and sampling
probabilities Relative cost

efficienc
1.2

* Find Sampling scheme that E
maximizes E(information), [&f
subject to constraint
on total cost

0.4 ) (N5

« Example: E(info)/Cost Proportion in substudy
as function of overall sampling fraction




Examples

« Candidate gene association study using
tag SNPs

 Pathway-based study involving biomarkers

« Genome-wide association study



Candidate Gene Studies

A priori hypotheses about candidate gene(s)

If functional variants known in a clinical trial:
no need for multistage sampling ...
But not If starting point is a cohort study.

Negative result could mean gene is not relevant
or wrong variant(s) were tested

Complete characterization would require
sequencing of entire gene in full sample

Focus on common variants = tagSNP approach



Preservation of Pancreatic (3-Ci

Prevention of Type 2 Diabetest | ., PPaRG
. . ' I | | I 1
Treatment of Insulin Resistance .
.
Women D157 ' . .
Thomas A. Buchanan,'®? Anny H. Xiang.** Ruth K. Pete E --------------- VT e e T 'j e
Jose Goico,' Cesar Ochoa," Sylvia Tan,* Kathleen Berko: & 1ok e
and Stanley P. Azen®* Eﬂ . . .: . :;-
Diabefes 51:27V96-2803 ~ . O
05 F p -
60 . J .
0.0 " | ; i 1 .|‘ L . b ]
i 12.25 12.30 12.35 12.40 12.45 12.50
Position [Mb]

Y
L=
T

FIG. 1. Single marker association with response to troglitazone. The
negative log of the P value for the x? test of association is plotted
according to physical distance, Horizontal dashed line denotes P value
of 0.L05. Two SNPs in close proximity gave identical P values, so only

Femmememmmmns  SeVen of the eight significant results are visible. The gene structure for
i PPAR( is shown at the fop with the Al promoter on the fefi.

Placebo\\

M
o

----- Oriwgrnal Article
Sequence Variation in PPARG May Underlie Differential
Response to Troglitazone

Johanna K. Wolford," Kimberly A. Yeatts,' Sharanjeet K. Dhanjal,” Mary Helen Black,?
FIG. 1. Cumulative incide ANy H. Xlang.* Thomas A. Buchanan,” and Richard M. Watanabe®
returned for at leastovte f¢ .~ . . - - -
or troglitazone. The rate in the troglitazone group was significantly DL{;,E]FIES 34:3319_33231‘ 200&

lower than the rate in the placebo group (P = 0.009).

L=

Q
-
<1

Cumulative incidence of diabetes (%)




Multistage Sampling
for TagSNP Studies

Small sample to characterize LD patterns and

choose tag SNPs S

Only tag SNPs and treatment T are tested In

main study

Joint analysis allows tests of untyped SNPs G

pe(Y IS, T) =2, pa(Y|G=9,T) p,(G=9g | S)

Haplotype analysis similar,
additional summation over

Out requires
nossible haplotype

resolutions given unphasec

genotypes

Thomas et al., Genet Epidemiol 2004;27:401-14



Extensions

 Multistage samples incorporating
sequencing

 Gene-treatment interactions:
optimize design by sampling on outcome,
treatment, and surrogate for causal variant



Nested Genetic Study
Within a Clinical Trial

Stage |: observe Y | T

Stage Il: sample conditional on Y,T;
observe G|Y, T

Likelihood is: IT, p(v 1) x I p(G|Y,T)"eYT
Total information is: 2y, Ny iyt + 2g Ngyr(S) igyr
Choose s to maximize information per unit cost

Optimal design might sample only Y=1, T=1



Info.,+/Cost by Sampling Fractions




Is Equal Allocation Optimal?

Sampling plan Sampling fractions ARCE
(R=2)

No subsampling (1,1,1,1) .0033
Constant sample | (.086, .086, .086, .086) .0044
Equal allocation (.046, .789, .076, 1) .0064
Case-control (.051, .051, 1, 1) .0063
(1, 0,0, 0) .0024

Sample only one (0,1,0,0) .0036
cell (0, 0, 1, 0) 0044
(0,0,0,1) .0071




Clinical Trial
Within an Observational Study

» Stage |I: observe G, Y, (disease)

» Stage Il: sample Y,=1 subjects within strata of G
assign T | G at random

observe treatment outcomes Y, | T, G

 Optimize sampling fractions given G



Case-Only Designs

From clinical trial, sample only responders
or only nonresponder (whichever is rarer)

From cohort study of T, sample only cases
In either design, examine G-T association

Assuming G and T are independent in
population, G-T association in cases
estimates GxE interaction



Counter-Matched Design

In a cohortwith T and Y :

Match each T=1 case with a T=0 control and
vice-versa from within Cox risk set

Measure G on cases and CM’'d controls

Analysis Is by conditional logistic regression
with offset term for control sampling fractions

Langholz & Goldstein, Statist Sci 1996;11:35-53



Example: WECARE

Nested case-control study of second breast
cancer in relation to radiotherapy and DNA
repair genes (ATM etc.)

700 cases of bilateral breast cancer

1400 controls, counter-matched on radiotherapy
(2 treated + 1 untreated per triplet)

Contralateral radiation doses estimated by
phantom dosimetry

Genotyping of ATM and other genes

Bernstein et al. Breast Ca Res 2004:6:R199-214



Doses to the Contralateral Breast During RT

Subgroup RR (95% CI)
>1.0 Gy vs. no RT
»>
All subjects 1.3(1.0-1.6)
Under age <45 at exposure 2.0(1.1-3.8)

5+ vy latency

Under age <40 at exposure 2.8 (1.1-8.8)
5+ y latency

4500-6000

10-170

Treated Breast: Tumor Dose Contralateral Breast: Range of
Average Dose per Quadrant
Among Patients

Absorbed radiation dose (cGy) to the contralateral breast during RT is
estimated using patient-equivalent phantoms and medical/treatment record
information. Range limits correspond to techniques used among WECARE

pgrtilcipants that resulted in the lowest and highest doses to each quadrant and
nipple.



Role of ATM in Cellular DNA Damage Response

.. Q i "y, Q %,
- =G \ Checkpoint
(P ] Apoptosis

Non- Homologous
homologous recombination
end-joining repair

repair S phase

checkpoint



Distribution of Unique Non-Silent ATM
Variants: WECARE Study Progress

Mutations A8 0% 3 O 0 2 0 0 o

L1 1 9990000000000000 2000 0000000000000000000000000000 20 900 00
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Xons 1 3 5 7 911131517 192123252729 31333537 394143454749 51 53 555759 61 63 65

: ATM
Protein -
Rad3 homology  PI-3 kinase homology

® Truncating

Bernstein et al, Hum Mut 2003:21:542-50



Main Effects of ATM

All 12w freq >1% | 0.8 (0.6 —0.97)
m 0.6 (0.4 — 0.96

Takle 2: Risk of developing second primary breast cancer using general categories of ATK variants
(comparad to wild-type).
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ATM x Radiation Interaction

Takle 2: AT gene carrier status and radiaticn on risk of developing second primany
breast cancer.

Cases Controls
Variable RT+ RT- ET+ RT- RRE 495% Cl
Chverall®
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42 11
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Examples

 Candidate gene association study using
tag SNPs

 Pathway-based study involving biomarkers

« Genome-wide association study



Pathways and Biomarkers

e Studies of many related genes, e.qg.,

— Drug metabolism

— Repair of DNA damage from therapeutic radiation

e Joint analysis of all relevant genes using
hierarchical or pharmacokinetic models

 Wish to incorporate markers of intermediate
endpoints, e.g., urine/blood concentrations
of metabolites, but expensive or awkward



Effects of a 5-Lipoxygenase—Activating
Protein Inhibitor on Biomarkers Associated
With Risk of Myocardial Infarction

A Randomized Trial AMA. 2005-293-2245
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Effects of a 5-Lipoxygenase—Activating
Protein Inhibitor on Biomarkers Associated
With Risk of Myocardial Infarction

A Randomized Trial JAMA. 2005:293:2245-2256

alan ak ars ] ) )
M Context Myocardial infarction (MI) is the leading cause of death in the world. Variants
sverrir Thorvaldzzon, MS5c in the 5-lipoxygenase—activating protein (FLAP) gene are associated with risk of M.

Biomarker Dose / Change P
Time (95% CI)

Leukotriene B, | 750 mg/d 26% .003
(10 — 39%)

MPO 750 mg/d 12% 02
(2 — 21%)

500 — 750 16% .07
2 wk (-2 — 31%)

4wk post 25% 10)%
washout (5 — 40%)

CRP
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Gene-Expression Patterns in Drug-Resistant Acute Lymphoblastic
Leukemia Cells and Response to Treatment
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Pathway Analysis with Biomarkers

e Notation:

G = genes

Y = outcomes

T = treatment

M = intermediate metabolite (unobserved)

B = flawed biomarker for M

e Design

— Main study (M): (G,R,Y)
— Substudy (S): (G,R,B)

e Model

— Outcomes: Py(Y[M)
— Measurement: P_(B|M)
— Metabolic: P_(M|R,G)




Pathway Analysis

« Combined analysis of main study and
substudy data

« Maximum likelihood, integrating over latent
variable M

L(B.a,0)=]][P,(B;IM =m)P,(M =m|T,,G,) dm
<[T[R(Y, IM =m)P,(M =m|T;,G,) dm

e or MCMC, sampling M

Conti et al., Hum Hered 2003;56:83-93



Stratified Sampling for Biomarkers

 Optimize design by sampling subjects for
biomarker measurements by main study
dataon T,G,Y

o Starting with a clinical trial:
— Observe Y |T

— Sample given Y,T; observe G

— Subsample given Y,T,G; measure M

e Starting with an observational study:

— Observe Y,G (and E?)
— Sample given Y,G,E; apply T; measure M



Complex Pathways
Example: Folate

Ulrich et al., Nat Rev Cancer 2003;3:912-20
Ulrich et al., Parmacogenet 2002;3:299-314



Folate: the Minimalist Version

MTHFR (etc.)

Colorectal
Cancer

Dietary 5,10-MTHF
folic acid

Pyrimidine Synthesis
and DNA repair



Topology

« How well do we really understand the
structure of a network?

* |Incorporate uncertainty in topology into
models

— Bayesian network analysis, e.g., for expression
(Friedman et al, J Comp Biol 2000;7:601-20)

— Basso et al, Nat Genet 2005:38:382-90

e Contribution of systems biology ... at the
opposite end of detail from molecular
epidemiology



Stochastic Boolean Networks
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Causality in Molecular Epidemiology

 We postulate a causal pathway
from exposures E and genes G
through a sequence of
Intermediate steps X to a disease.

We wish to test the causality of a
particular intermediate, as
measured by Z,on Y

By which we mean that holding all

other determinants of Y fixed, a
change in X would lead to a
changeinyY

Note: the focus of inference here will be
on the causality of X (not Gor E) on Y,
except as X is modifiable by E



Difficulties in Causal Inference

e Reverse Causation

 Pleiotropy




“Mendelian Randomization”
@ to the Rescue!

Instead of testing X = Y directly
(or more realistically Z =Y ),

testG=>Zand G=Y
relationships separately

If both are present, infer a causal
connection X =Y, because G is
not subject to either confounding
Or reverse causation

However G could have
pleiotropic effects on Y mediated
thru W, not X



“Real” Mendelian Randomization

 Genes are not really assigned randomly
across the population, only conditionally
on parental mating types

« Family-based association studies (e.g.,
transmission-disequilibrium test (TDT))
exploit this feature:

Pr(G|Y,Gpar) = Pp(Y [G) P(GIGpar) / Pe(Y [Gpar)

e Extension to MR:

Pr(G,X[Y,Gpa)
= Pp(Y [X) Po(X|G) P(G|Gpar) /Py p(Y [Gpar)



Mendelian Randomization
In the Clinical Trials Setting

 Opportunity to randomize both the treatment T
and the modifiers G

e Classical MR assumes G are randomly assigned
across the population, would treat both T and G
as instrumental variables

— Models B |T,Gand Y |T,G

— Infer causal connection thru M If both exist

 Real MR obtains G for parents and trial subjects
R 1GLT) PG | Gp)
Zg PB(Yi |G, =0,T)) P(G, =09 |Gpi)

L, (B) =Pr(G, |Y;,T;,Gp ) =



Double MR to Test a Randomized

Environmental Hypothesis
(D.A. Lawlor, DAE/GDMS 2005)

‘ GK + |——‘ Full sisters |—'| GK - ‘

I—' |—' I—'j Offspring
GK+‘ GK< GK+ | of sisters

Compare BMI:

Equivalent to a randomised
trial to slightly higher glucose
concentrations in utero




Examples

« Candidate gene association study using
tag SNPs

 Pathway-based study involving biomarkers

« Genome-wide association study



Genome-wide Assoclation Studies

e Scan of the entire genome to search for
genes associated with a trait (or
Interactions)

 Most scans use multistage design, using
commercial chip (~500K SNPs) on first
sample to identify promising associations,
confirming them on additional samples

 Optimize design with respect to critical value
at stage | and allocation of sample size

Wang et al, Genet Epidemiol 2006;30:356-68



GWA for Treatment Modifiers

 Select stage | and Il samples conditional
on treatment and outcome

* Prioritize SNPs for stage Il based on test
of gene-treatment interactions

— Based on case-only or case-control
comparisons

— Also based on main effects
— Incorporate genomic annotation in ranking



Genome-wide discovery of loci influencing
chemotherapy cytotoxicity

James W. Watters’, Aldi Kraja*, Melissa A. Meuccit, Michael A. Province?*, and Howard L. MclLeod™ "It

PNAS | August 10, 2004 | weol 101 | neo. 32 | 11809-11814

Table 2. Regions showing preliminary evidence for linkage using
the RCR-derived rate of dose response as the phenotype
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Reality Check: Sample Size Needs

Candidate genes, pathways, genome-wide
Therapeutic or prevention trials
Main effects or treatment modifiers

Power calculations by Quanto

— Gauderman, Am J Epidemiol 2002;155:478-84 (GxG)
— Gauderman, Stat Med 2002; 21:35-50 (GXE)

http://hydra.usc.edu/gxe



Candidate Treatment Modifier Gene

« Sample sizes needed to detect interaction effect
at a = .05, 1-B = .90, single stage design

RRg. 1 Cases (cohort size) needed
Therapeutic | Prevention
p(Y)=0.5 p(Y) =0.01
0.3 271 (542) 142 (14K)
0.5 789 (1,578) 408 (40K)
0.7 2,900 (6,000) | 1,513 (150K)
0.9 33K (67K) 17K (1.7M)




Candidate Treatment Modifier Gene

« Sample sizes needed to detect interaction effect
at a = .05, 1-B = .90, single stage design

RRg. 1 Cases (cohort size) needed
Therapeutic | Prevention
p(Y)=0.5 p(Y) =0.01
0.3 271 (542) 142 (14K)
0.5 789 (1,578) 408 (40K)
0.7 2,900 (6,000) | 1,513 (150K)
0.9 33K (67K) 17K (1.7M)




Candidate Treatment Modifier Gene:
Two-Stage Design

 Consider prevention trial scenario with
p(Y) =.01 and RRg, = 0.5

 Nested case-control study with 1:1
matching within treatment arms

Cohort Cases | Controls

l-stage | 14K 140 13,860

2-stage 27K 270 270

e Somewhat greater advantage If stages |
and Il were analyzed jointly



Randomized Trial within
an Epidemiologic Cohort

« Cohort study: observe Y, measure G

 Challenge experiment:
sample based on Y and G,
assign T (randomized or crossover),
measure acute response R

« Example: Children’s Health Study



Challenge Studies:
GSTM1 x GSTP1 in Allergic Response to DEP

1000-0

GSTM1 | GSTP1 | N AIGE

+ I/l 2 26
(6.7— 45)

+ YAV 3 49
(-1.5 -61)

— |/l 11 137
(29 — 511)

GSTM1 + — 1/ 3 9.1
(1.0 — 46)

Clean air+allerden Diesel exhaust particles
+allergen
MNasal allergenspecific IgE response to allergens plus clean air Gl I I | I an d et al L an C et 2004 - 363 . l 19_25
and allergen plus diesel exhaust particles for GSTM1 absent ! ! :
(upper) and present (lower) genotypes




Biomarker for Pathway

e Stage |: Prevention trial, assign T, observe Y

o Stage IlI: Nested case-control study,

sample based on Y, T, observe G, and G,

« Stage lll: Biomarker substudy,
sample based on Y, T, G, observe M

Cases Controls |[|Effect Min det r?
Stage | 270 27K Y|M 1.7/SD
Stage Il | 135,135 135,135 (|M|T,G 6.5%
Stage ll1|10x 8=80|10x 8 =80




Genome-wide Assoclation Scan
for Treatment Modifying Genes

« Same model parameters as for candidate
gene study

« Two-stage genotyping strategy with
genomewide significance level .05
(1x107 per SNP) and 90% power

Cases / controls
RRg,r = 0.3 | RRs,+ = 0.5| Markers
Stage | 600 1700 10014
Stage |l 610[0) 1700 5K




Perspectives

Well established statistical theory

Increasingly used in epidemiology and
genetics, but underdeveloped In
pharmacogenetics

Particularly useful for incorporating
pharmacokinetic / pharmacodynamic
models

Sample size requirements for detecting
Interactions are large






Nature Genetics 38, 68 - 74 (2006)
Published online: 10 November 2005; |
doi:10.1038/ng1692

A variant of the gene
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Maternal-Fetal Interactions

Standard TDT analysis is Pr(G, |G,,,G;,Y,=1)
Suppose:

Pr(Y,=1[G,,G,,Gs) o« exp(B,G, + B,G, + B3G,G,)
Parameters 3, and [3; are estimable; 3, Is not
Instead use Pr(G,,G,,,G; |MT,Y_=1)

Now all three parameters are estimable,
assuming Pr(G,,,G;) = Pr(G;,G,,).
No controls needed



Activating Enzymes Detoxifying Enzymes




Contexts

« Candidate gene known to be functionally
relevant to agent

 Biomarkers to inform about pathway

« Genome-wide search for modifier genes



Design alternatives

e Clinical trial within
observational study

Cohort study: sample
based on E, store DNA,
observe Y

subsample based on Y,E,
measure G

OR

Case-control study:
sample based on Y,
observe E, G

Subsample based on Y,E,
G, assign T, observe M

 Genetic study within a clinical
trial

— Assign T, observe Y, M

Subsample based on Y,M,T
Observe G

e Observational study with
countermatching (WECARE)

Observe T, Y

Nested case-control sample
based on Y, countermatching
onT

Observe G



ATM Gene Screening

e ATM Gene Analyses

Conducted in 4 labs

Staged approach: DHPLC followed by Direct
Sequencing

All conditions, primers standardized across
labs

Inter- and Intra-lab QC implemented

(Bernstein, ..., Concannon, Hum Mut2003)



RCT for diabetes
prevention in 3234
overweight people with
elevated fasting glucose

Randomized to lifestyle
Intervention, metformin,
or placebo

58% reduction in diabetes
risk on lifestyle
Intervention and 31%
reduction on metformin
over 3 years

Genotyped for two
common polymorphisms
In TCF/L2 associated
with NIDDM
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Figure 1. Incidence of Diabetes According to Treatment Group and Genotype at Variant rs7903146.

The F values were determined by the log-rank test.




Genetic Assoclation Studies
INn the Context of Clinical Research

* |ldentify and characterize genes that
modify response to phamacologic agents
or other interventions

— Preventive or therapeutic (phase |, 1, 1ll)

« Approaches:

— Clinical trials with genetic add-ons

— Nested challenge or treatment studies within
population-based observational studies

— Integrating separate observational and
randomized studies
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