Modelling the transmission dynamics of nosocomial pathogens with data of a recent VRE-outbreak at a University Hospital

Wolkewitz M^1 , Dettenkofer M^2 , Huebner J^3 and Schumacher M^1

¹Institute of Medical Biometry and Informatics,
²Institute of Environmental Medicine and Hospital Epidemiology,
³Division of Infectious Diseases,
University Medical Center Freiburg

wolke@fdm.uni-freiburg.de

11 Sept 2006

Hospital-acquired pathogens

Background

- Hospital-acquired pathogens
- Outbreak in University Medical Center Freiburg

Methods

Results

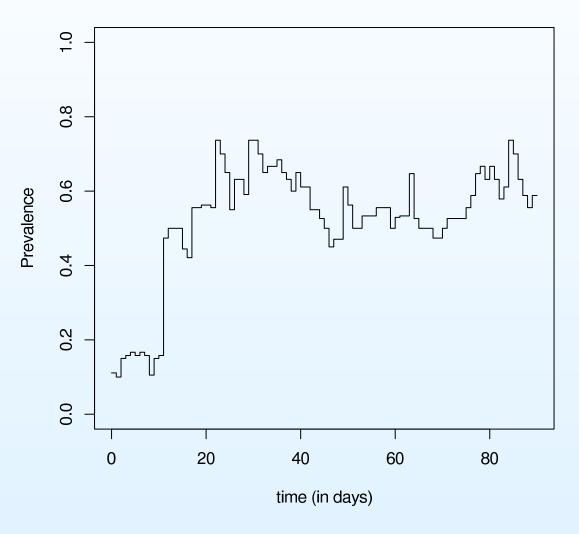
Discussion

- Multi-resistent pathogens like e.g. vancomycin-resistent enterococci (VRE) are a major infection control problem
 - increasing costs and prolonging the length of stay in hospitals
- intervention strategies are essential to control the outbreak
- mathematical modelling can help to understand the transmission dynamics
- recent VRE-outbreak at the University Medical Center Freiburg, where more than 100 patients were colonised or infected
- data-based estimates will be used for model parameters

Outbreak in University Medical Center Freiburg

Background

• Hospital-acquired pathogens


• Outbreak in University Medical Center Freiburg

Methods

Results

Discussion

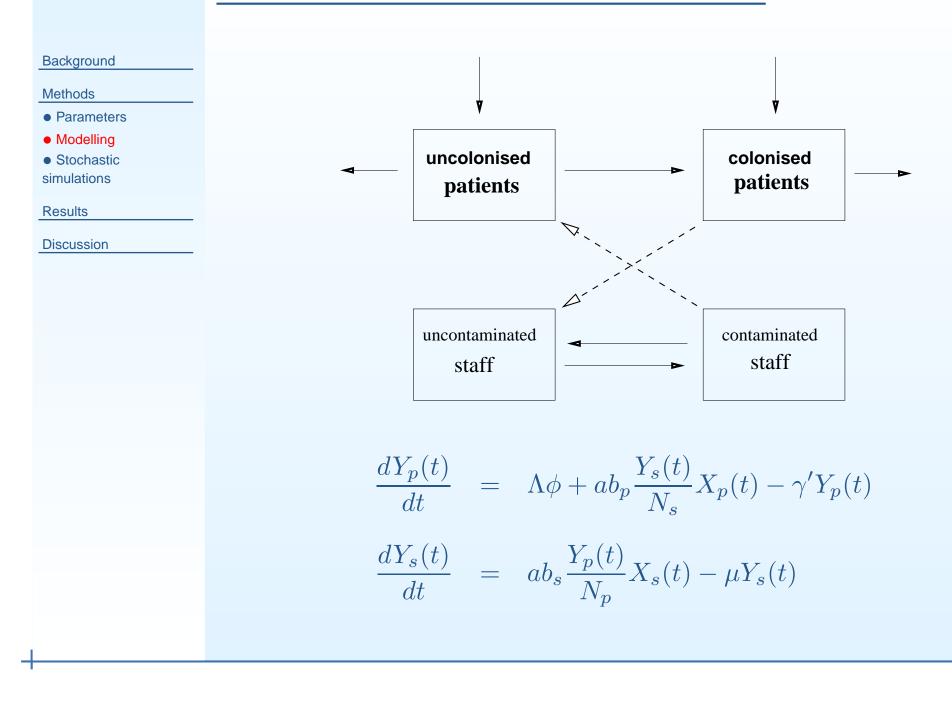
Prevalence of VRE-positive patients per day in hematological / oncological ward (19 beds), 11/2004 - 1/2005

Parameters for hematological / oncological ward

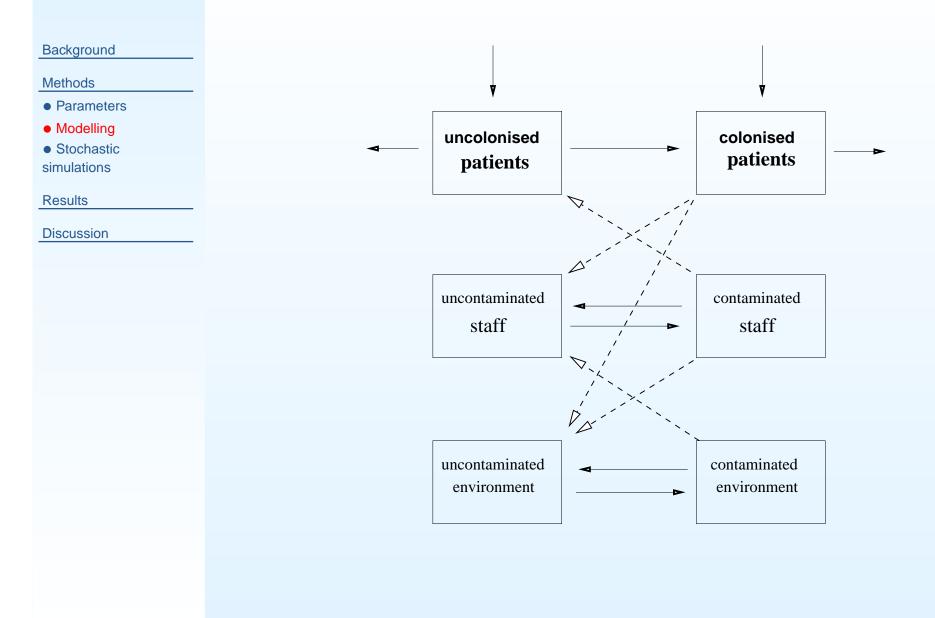
Background

Parameters
Modelling
Stochastic simulations

Methods


Results

Discussion


Data based estimation and expert guesses (literature)

Parameter	Meaning	Value
N_p	number of beds	19
N_s	number of med.staff	7
а	contact rate (/med.staff/patient/day)	6.9
n	nursing-staff proportion	0.7
$\hat{\phi}$	admission colonisation prevalence	0.16
$\hat{\gamma}$	uncolonised discharge rate	0.08
$\hat{\gamma'}$	colonised discharge rate	0.04
1/ μ	duration of contamination	1 h
b_s	contamination probability	0.4
b_p	colonisation probability	0.06
$1/\kappa$	duration of contamination of the envir.	10 days
eta_{e_s}	transmission from med. staff to envir.	0.15
eta_{e_p}	transmission from colon. patient to envir.	2

Ross-Macdonald model (applied for ICU's)

Extension: Additional route via contaminated environment

Mathematical Modelling: Stochastic model

Background

Methods

Parameters

Modelling

Stochastic

simulations

Results

Discussion

Event		Rate
colon. admission	$Y_p \to Y_p + 1$	$\Lambda\phi$
transmission	$Y_p \to Y_p + 1$	$ab_p \frac{Y_s(t)}{N_s} X_p(t)$
removal	$Y_p \to Y_p - 1$	$\gamma' Y_p(t)$
med. staff cont.	$Y_s \rightarrow Y_s + 1$	$ab_s(\frac{Y_p(t)}{N_p} + \frac{Y_e(t)}{N_e})X_s(t)$
med. staff decont.	$Y_s \to Y_s - 1$	$\mu Y_s(t)$
ENVIR cont.	$Y_e \to Y_e + 1$	$(\beta_{e_s} \frac{Y_s(t)}{N_s} + \beta_{e_p} \frac{Y_p(t)}{N_p}) X_e(t)$
ENVIR decont.	$Y_e \to Y_e - 1$	$\kappa Y_e(t)$

Remarks

- true mass action ('/N.')
- Reed-Frost assumption ('Y.X.') instead of Greenwood ('X.')
- solution of ODE's only yields the mean, but without any variation
- stochastic simulations are essential for small populations
- time to next event is assumed to be exponentially distributed

Simulations of the Poisson process

Background

- Methods
- Parameters
- Modelling
- Stochastic
- simulations

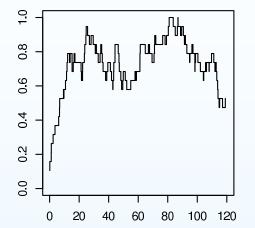
Results

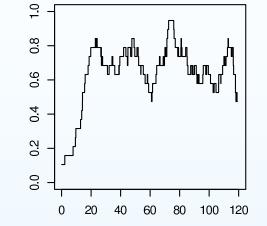
Discussion

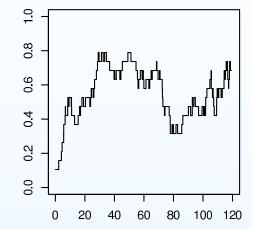
- initializations
 - choose parameter values
 - choose initial values
- iteration
 - $\circ \quad \text{sum up all rates of change:} \\ \sum = \lambda_1(t) + \lambda_2(t) + \lambda_3(t) + \lambda_4(t) + \lambda_5(t) + \lambda_6(t) + \lambda_7(t)$
 - \circ $\$ next event occurs after random time $T \sim exp(\sum)$
 - the conditional probability that single event i, $(i \in \{1, ..., 7\})$ happens is proportional to the corresponding rate of change: e.g. at T a colonised admission happens with probability λ_1 / \sum
 - \circ calculate new \sum

Monte-Carlo simulations of the stochastic process

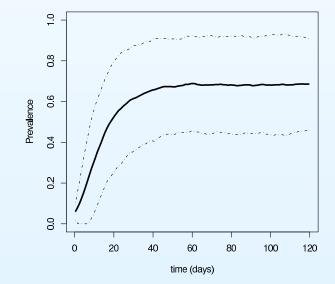
Methods


• Intervention


strategies


• Effect of intervention

strategies


Discussion

No intervention

1000 simulations: mean with 95% pointwise confidence band

Intervention strategies

Background

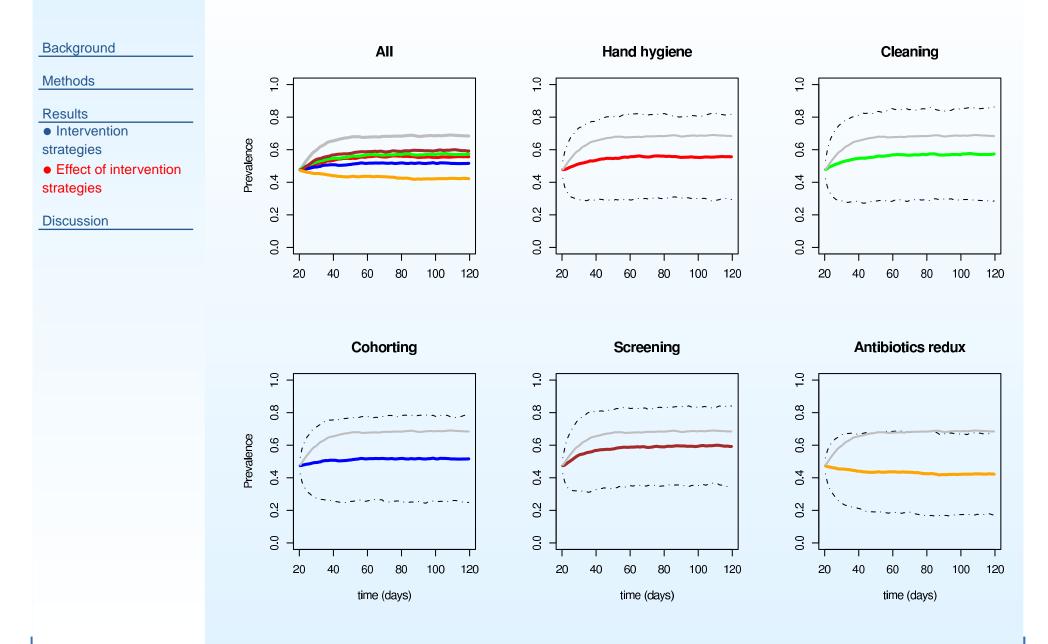
Methods

- Results
- Intervention

strategies

• Effect of intervention strategies

Discussion


Intervention

- 1. hand-washing, use of gloves (compliance 50%)
- 2. specific cleaning of contaminated environment (3 times a day)
- 3. patient isolation or one-to-one nursing (cohorting prob. 80%)
- 4. screening on admission (isolation of VRE-positve)
- 5. restricting antibiotics (RR=3, reduction of 50%)

Monte-Carlo simulations

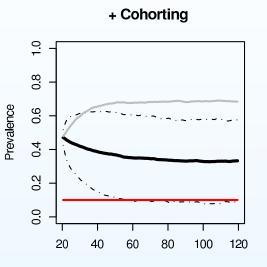
- 20 days after the outbreak: intervention
- simulations might show the effect of the intervention

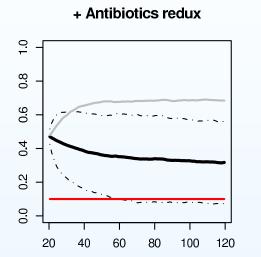
Effect of one intervention strategy (after 20 days)

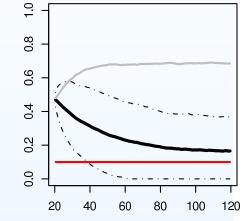
Effect of combined intervention strategies

Hand hygiene, cleaning and ...

Background

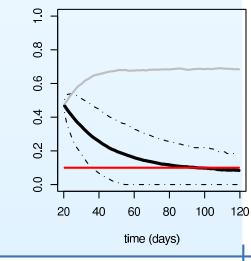

Results

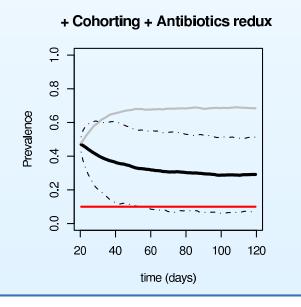

Intervention strategies

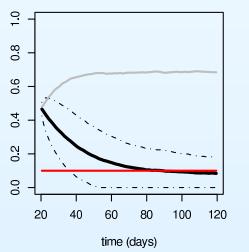

Effect of intervention

strategies

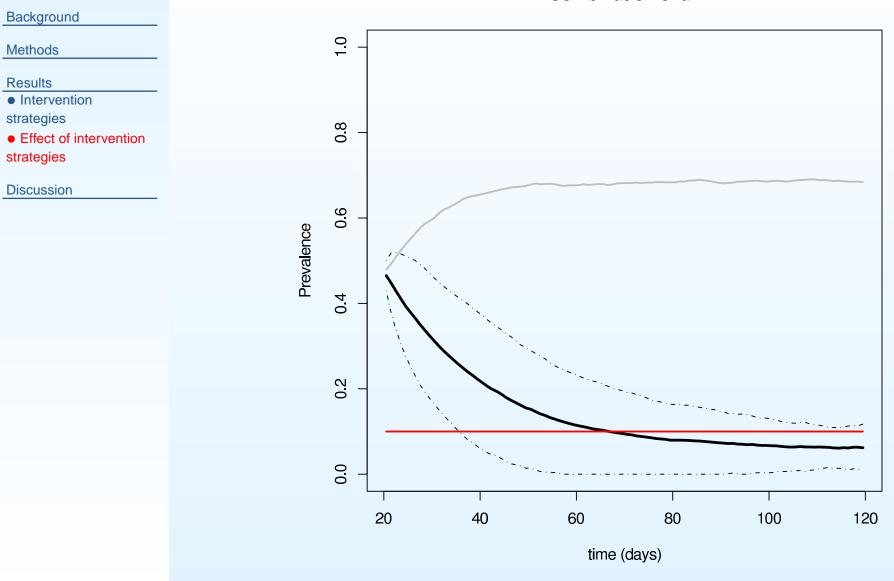
Discussion






+ Screening

+ Screening + Antibiotics redux


+ Screening + Cohorting

Effect of combined intervention strategies

Combination of all

Summary

Bac	kground	

Methods

Results

Discussion

Summary

• Limitations and

outlook

- Modelling
 - extension of established methods: additional routes
 - stochastic simulations of the Poisson process
- Findings
 - $\circ~$ expected prevalence 30 days after outbreak: \sim 65-70%
 - only combination of several interventions might control VRE
 - then one can expect that it would last about 40-100 days to eliminate VRE

Limitations and outlook

Background

Methods

Results

- Discussion
- Summary
- Limitations and outlook

Limitations:

- more realistic, but overfitted ?
- parameters partly judged by expert guess rather than estimated from data
- constant rates assumed, but e.g. transmission rate probably changes with time after interventions

Outlook:

- combining deterministic modelling with statistical analysis methods
- parameter estimation via martingale theory
- estimating time-dependent rates

Acknowledgement and Reference

Background	
------------	--

Methods

Results

Discussion

• Summary

• Limitations and outlook

Data collection: Thanks to C. Scheiber, M. Bussmann

- Anderson RM and May RM (1991) Infectious Diseases of Humans: Dynamics and Control (Oxford Univ. Press, Oxford)
- Renshaw (1991) Modelling Biological Populations in Space and Time (Cambridge University press)
- McBryde ES and McElwain LS. The Journal of Infectious Diseases 2006;193:1472-3
- Austin DJ, Bonten MJM, Weinstein RA, Slaughter S, Anderson R. Vancomycin-resistant enterococci in intensive-care hospital settings: transmission dynamics, persistence, and the impact of infection control programs. Proc Natl Acad Sci USA 1999; 96:6908-13.
- Grundmann H, Hori S, Winter B, Tami A, Austin DJ. Risk Factors for the Transmission of Methicillin-Resistant Staphylococcus aureus in an Adult Intensive Care Unit: Fitting a Model to the Data. The Journal of Infectious Diseases 2002;185:481-488