Die Case-crossover Methode zur Analyse von Registerdaten seltener schwerer Hautreaktionen

P. Sekula¹, M. Mockenhaupt², M. Schumacher¹

Universitätsklinikum Freiburg, Deutschland

¹ Institut für Medizinische Biometrie und Medizinische Informatik

² Dokumentationszentrum schwerer Hautreaktionen

Outline: (1) Dokumentationszentrum schwerer Hautreaktionen (dZh)

- (2) Case-crossover Methode
- (3) Anwendung & Ergebnisse

Dokumentationszentrum schwerer Hautreaktionen (dZh)

(www.uniklinik-freiburg.de/hautklinik/live/dzh.html)

Gründung: 01.04.1990

Ziel: Erfassung aller hospitalisierter Erkrankungsfälle

mit schweren Hautreaktionen

- Schätzung der Inzidenz

- Erkennung/Beurteilung von Risikofaktoren

Umsetzung: regelmäßige Kontaktaufnahme zu ≥ 1700 Einrichtungen

Validierung: Beurteilung aller Fälle durch unabhängige Experten

Reaktionen: Stevens-Johnson-Syndrome (SJS)

Toxisch epidermale Nekrolyse (TEN)

=> Risikobewertung von Medikamenten

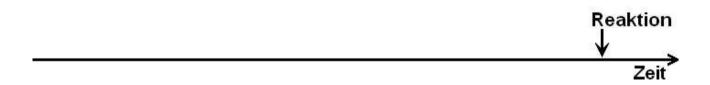
Daten von SJS/TEN-Patienten

Registerdaten zu deutschen Fällen = Fallserie

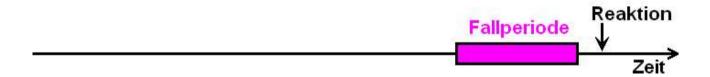
Methoden zur Risikobewertung für Fallserien erforderlich z.B. Case-crossover Methode

Vorteil: Daten aus internationalen Fall-Kontroll-Studien

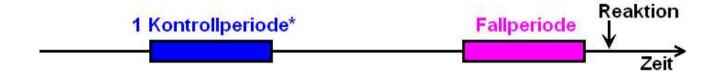
EuroSCAR : 1997 - 2001


Ziel: Schätzung von Medikamentenrisiken

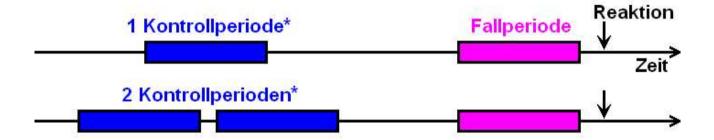
=> Vergleich der Methode mit Ergebnissen der Fall-Kontroll-Studie möglich


Case-crossover Methode

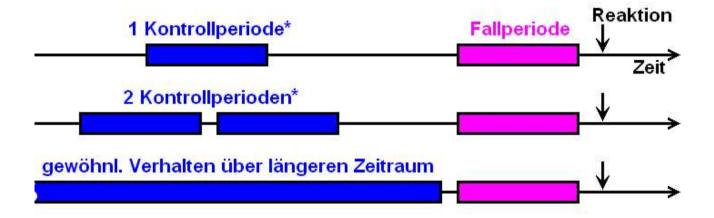
- Maclure (1991)
 "Were you doing anything unusual just before the episode?"
- Untersuchung von Faktoren mit vorübergehendem Einfluss bei akuten Erkrankungen/Reaktionen
- Jeder Fall dient als seine eigene Kontrolle!
- Risikoschätzung durch Vergleich der Exposition in Fall- und Kontrollperioden


Wahl der Fall- und Kontrollperiode

Wahl der Fall- und Kontrollperiode



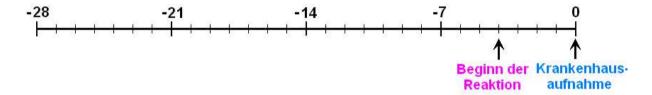
Wahl der Fall- und Kontrollperiode


* Länge der Kontrollperiode = Länge der Fallperiode

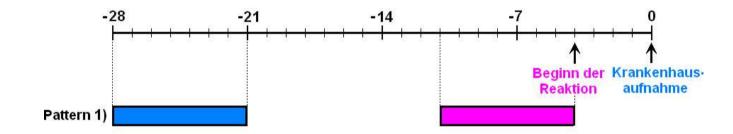
Wahl der Fall- und Kontrollperiode

* Länge der Kontrollperiode = Länge der Fallperiode

Wahl der Fall- und Kontrollperiode

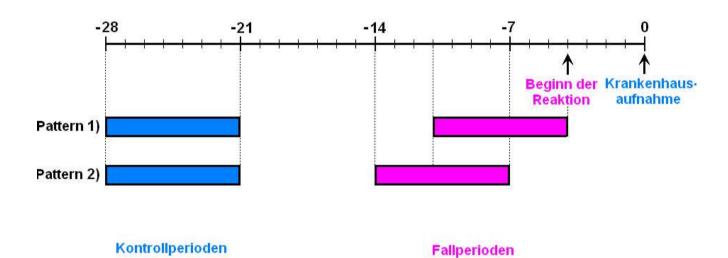


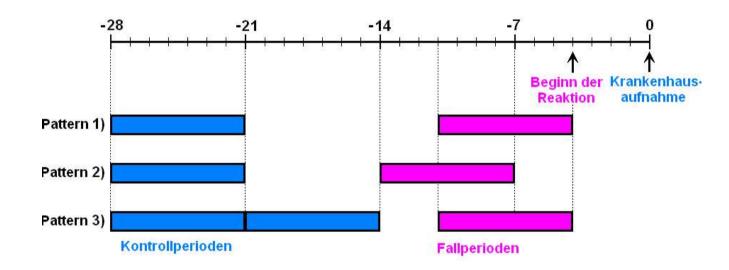
* Länge der Kontrollperiode = Länge der Fallperiode


Anwendung auf Registerdaten / EuroSCAR-Studie

- SJS/TEN akute, medikamenten-induzierte Reaktionen
- Medikamente mit vorübergehendem Einfluss
- Medikamentenexposition in den 4 Wochen vor Krankenhausaufnahme
- Vielzahl von unterschiedlichen Medikamenten
- Fallperiode = 7 Tage
- Daten der EuroSCAR-Studie für Vergleich mit Fall-Kontroll-Studie

Definition der Fall- und Kontrollperioden


Definition der Fall- und Kontrollperioden


Kontrollperioden

Fallperioden

Definition der Fall- und Kontrollperioden

Definition der Fall- und Kontrollperioden

Definition der Fall- und Kontrollperioden

Ausschluss von Fällen mit Beginn der Reaktion von mehr als einer Woche vor Krankenhausaufnahme

Konkordante/diskordante Fälle

Situation mit 1 Kontrollperiode

konkordante Fälle

Fallperiode

Kontrollperiode

	Exponiert	Nicht-exp.
Exponiert	>	
Nicht-exp.		✓

Konkordante/diskordante Fälle

Situation mit 1 Kontrollperiode

diskordante Fälle

Fallperiode

Kontrollperiode

	ı	
	Exponiert	Nicht-exp.
Exponiert		\
Nicht-exp.	/	

Konkordante/diskordante Fälle

Situation mit 1 Kontrollperiode

Beispiel: Allopurinol (Pattern 1)

Fallperiode

Kontrollperiode

	Exponiert	Nicht-exp.		
Exponiert	34	3		
Nicht-exp.	30	312		

=> Verhältnis: 30:3 => Odds ratio = 10

Analyse

Anzahl der Fälle (exkl. 40 Fälle mit früherem Beginn): 339

Anzahl untersuchter Wirkstoffe/-gruppen (EuroSCAR): ca. 40

Verhältnis diskordanter Fälle

	Anzahl	Pattern 1	Pattern 2	Pattern 3		
	exponierter	Fall: [-7;-1]	Fall: [-10;-4]	Fall: [-7;-1]		
	Fälle	1 Kontrollper.	1 Kontrollper. 1 Kontrollper.			
Allopurinol	68	30 : 3	27 : 2	30 : 3		
Oxicame	13	6 : 2	7 : 1	6 : 2		
Paracetamol	155	60 : 5	32 : 6	62 : 10		

Ergebnisse

OR	Fall-		Pattern 1		Pattern 2		Pattern 3	
95% KI	Kontroll-		Fall: [-7;-1]		Fall: [-10;-4]		Fall: [-7;-1]	
	Stud	die	1 Kontrollper.		1 Kontrollper.		2 Kontrollper.	
Allopurinol	18	[11; 32]	10	[3.1;33]	14	[3.2;57]	8.7	[2.6;29]
Oxicame	16	$[4.9;52]^1$	3.0	[0.6;15]	7.0	[0.9;57]	2.3	[0.4;12]
Paracetamol	1.9	[1.2;2.8]	12	[4.8;30]	5.3	[2.2;13]	11	[5.8;22]

multivariate log.

bedingte log. Regression

Regression

 $^{^{1}\, \}mathrm{verl\ddot{a}ngerter}\, \mathrm{Expositionszeitraum}$

Zusammenfassung

- dZh: Registerdaten von SJS/TEN-Patienten inkl. Medikamentenanamnese
- SJS/TEN: akute, medikamenten-induzierte Reaktion
- Medikamente: vorübergehender Einfluss

=> prinzipiell anwendbar

- Definition der Fallperiode erschwert
- 1 Kontrollperiode gleicher Länge
- kein Confounding durch konstante Charakteristika, aber durch zeitliche Faktoren
- kein Selektionsbias bei Kontrollen

=> bedingt anwendbar

Ausblick

- EuroSCAR-Studie gute Vergleichsmöglichkeit
- Verbesserung der statistische Methoden, die z.B. zeitabhängige Einflüsse durch andere Medikamente berücksichtigen
- Prüfung anderer Methoden für Fallserien (z.B. Feldmann, Farrington)
- Prüfung der Nutzung externer Ressourcen (z.B. Verordnungszahlen)

ENDE

Vielen Dank für Ihre Aufmerksamkeit!

Literatur

- [1] FARRINGTON, C. Relative incidence estimation from case series for vaccine safety evaluation. *Biometrics* 51 (1995), 228–235.
- [2] FELDMANN, U. Epidemiologic assessment of risks of adverse reactions associated with intermittent exposure. *Biometrics 49* (1993), 419–428.
- [3] MACLURE, M. The case-crossover design: A method for studying transient effects on risk of acute events. *American Journal of Epidemiology* 133 (1991), 144–153. PMID: 1985444.
- [4] MACLURE, M., AND MITTLEMAN, M. Should we use a case-crossover design? *Annual Review of Public Health 21* (2000), 193–221.
- [5] MITTLEMAN, M. A., MACLURE, M., AND ROBINS, J. M. Control sampling strategies for case-crossover studies: An assessment of relative efficiency. *American Journal of Epidemiology* 142 (1995), 91–98. PMID: 7785679.
- [6] REDELMEIER, D. A., AND TIBSHIRANI, R. Association between cellular-telephone calls and motor vehicle collisions. *New England Journal of Medicine* 336, 7 (Feb 1997), 453–458. PMID: 9017937.
- [7] REDELMEIER, D. A., AND TIBSHIRANI, R. Interpretation and bias in case-crossover studies. *Journal of Clinical Epidemiology 50*, 11 (Nov 1997), 1281–1287. Review. PMID: 9393384.
- [8] ROUJEAU, J.-C., KELLY, J., NALDI, L., RZANY, B., STERN, R., ANDERSON, T., AUQUIER, A., BASTUJI-GARIN, S., CORREIA, O., LOCATI, F., MOCKENHAUPT, M., PAOLETTI, C., SHAPIRO, S., SHEAR, N., SCHÖPF, E., AND KAUFMAN, D. Medication use and the risk of Stevens-Johnson syndrome or toxic epidermal necrolysis. *The New England Journal of Medicine* 333 (1995), 1600–1607.
- [9] VIBOUD, C., BOËLLE, P., KELLY, J., AUQUIER, A., SCHLINGMANN, J., ROUJEAU, J.-C., AND FLAHAULT, A. Comparison of the statistical efficiency of case-crossover and case-control designs: Application to severe cutaneous adverse reactions. *Journal of Clinical Epidemiology* 54 (2001), 1218–1227.