Ein Permutationstest auf Assoziiertheit der Haplotypenverteilung mit einer ordinalen Variable

K. Neumann

Institut für Biometrie und Klinische Epidemiologie Charité, Berlin

Einleitung

- Stichprobe: N=573 Patienten, die chronisch an Hepatitis C (HCV) leiden.
- Zwei Polymorphismen des CTLA4-Gens (Cytotoxic T-lymphocyte antigen-4) wurden typisiert:
 - im Promotorbereich (C->T, -318)
 - im Exon1 (A->G, 49)

Einleitung (2)

 Möglicher Zusammenhang dieser Polymorphismen mit der Immunantwort und damit mit dem Verlauf der Hapatitis C Erkrankung.

 Der histologische Fibrosegrad (ordinal von 0 bis 4) beschreibt die Schädigung der Leber durch das Hepatitis C Virus (0 = keine Fibrose, 4 = Zirrhose)

Fragestellung

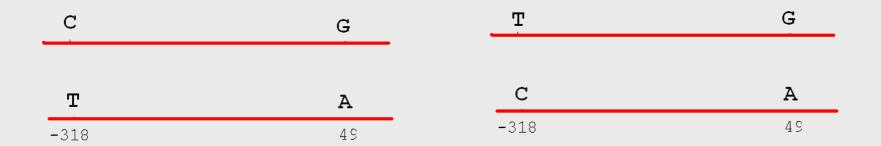
 Gibt es einen Zusammenhang zwischen den Polymorphismen von CTLA4 und dem Fibrosegrad?

Insbesondere:

Können "Risikohaplotypen" angegeben werden?

Haplotyp-Rekonstruktion

 Ist ein Individuum an mehr als einem (typisierten)
Genlocus heterozygot, dann kann nicht eindeutig auf das Paar der Haplotypen geschlossen werden:



Haplotyp-Rekonstruktion (2)

- Bei zwei Genloci ist das die einzige Mehrdeutigkeit.
- Allgemein gilt: Ist ein Individuum an k>1 Loci heterozygot, dann gibt es 2^{k-1} verschiedene Auflösung in Paare von Haplotypen.
- Bei k Loci gibt es maximal:
 - 3^k Phänotypen (=Genotypen ohne Information über die "Phase").
 - $-2^{k-1}(2^k+1)$ Genotypen (mit Information über die Phase).

Haplotyp-Rekonstruktion (3)

- Direkte Bestimmung des Genotyps (mit Phase) ist sehr aufwändig (z.B. Genotypisierung naher Verwandter)
- Ausweg: Schätzung der Häufigkeit der Haplotypen in der gesamten Stichprobe unter anderem durch
 - EM Algorithmus
 - Bayesische Methoden (PHASE von M. Stephens)

EM Algorithmus zur Schätzung der Häufigkeit der Haplotypen (E-Schritt)

Für jeden Genotyp (mit Phase) $H_i H_j$ ermittelt man den zugehörigen Phänotyp S und die Menge G_S aller Auflösungen von $S=S(H_1 H_2)$ in Genotypen.

Beispiel: Für den Genotyp H₁H₂ mit

$$H_1=(C,G)$$
 und $H_2=(T,A)$

ist

$$G_S = \{(C,G)(T,A),(T,G)(C,A)\}.$$

EM Algorithmus (E-Schritt 2)

Genotyp	Phänotyp	G_s
H ₁ H ₁	WW	$\{H_1H_1\}$
H_1H_2	Wh	$\{H_1H_2\}$
H_1H_3	hW	$\{H_1H_3\}$
H ₁ H ₄	hh	$\{H_1H_4, H_2H_3\}$
H_2H_2	MW	$\{H_2H_2\}$
H_2H_3	hh	$\{H_1H_4, H_2H_3\}$
H ₂ H ₄	Mh	$\{H_2H_4\}$
H_3H_3	WM	$\{H_3H_3\}$
H ₃ H ₄	hM	$\{H_3H_4\}$
H_4H_4	MM	$\{H_4H_4\}$

H ₁	(w,w)	
H_2	(m,w)	
H_3	(w,m)	
H_4	(m,m)	

EM Algorithmus (E-Schritt 3)

Mit den im g-ten Schritt geschätzten Häufigkeiten der Haplotypen $p_1^{(g)},...,p_h^{(g)}$ berechnet man

$$P(H_i H_j)^{(g+1)} = \frac{N_s}{N} \frac{p_i^{(g)} p_j^{(g)}}{\sum_{H_m H_n \in G_s} p_m^{(g)} p_n^{(g)}}.$$

 N_S : Häufigkeit des zu H_iH_i gehörigen Phänotyps.

N: Stichprobenumfang.

EM Algorithmus zur Ermittlung der Häufigkeiten der Haplotypen (M-Schritt)

Aus den $P(H_iH_j)^{(g+1)}$ wird die Schätzung der Häufigkeit der Haplotypen für die g+1–te Iteration gewonnen:

$$p_i^{(g+1)} = \frac{1}{2} \left(\sum_{j \neq i} P(H_i H_j)^{(g+1)} + 2P(H_i H_i)^{(g+1)} \right)$$

EM Algorithmus zur Ermittlung der Haplotypen

• Konvergiert der Algorithmus für $g \to \infty$, dann hat man die Häufigkeiten

$$p_1, \ldots, p_h$$

der Haplotypen $H_1, ..., H_h$ geschätzt.

 Aus *p*₁,..., *p*_h kann für jedes Individuum der Erwartungswert für die Anzahl von Haplotyp H_i (i=1,...,h) angegeben werden (0 bis 2).

Test auf Zusammenhang der Verteilung der Haplotypen mit dem Fibrosegrad

- Mit diesen Erwartungswerten kann für jeden Haplotyp eine Rangsumme R_i , $i=1,\ldots,h$ bezüglich des Fibrosegrades bestimmt werden.
- Als Teststatistik wird berechnet:

$$T = \sum_{i=1}^{h} \frac{R_i^2}{N_i} \quad \text{mit} \quad N_i = 2p_i N.$$

Test auf Zusammenhang der Verteilung der Haplotypen mit dem Fibrosegrad (2)

Die Statistik für

$$T = \sum_{i=1}^{h} \frac{R_i^2}{N_i}$$

wird durch Permutation der Fibrosegrade ermittelt. Für jede Permutation σ wird der zugehörige Wert der Statistik T_{σ} berechnet.

Test auf Zusammenhang der Verteilung der Haplotypen mit dem Fibrosegrad (3)

Der P-Wert ergibt sich als

$$P = \frac{\#\{\sigma \text{ Perm. vom Grad N} \mid T \le T_{\sigma}\}}{N!}$$

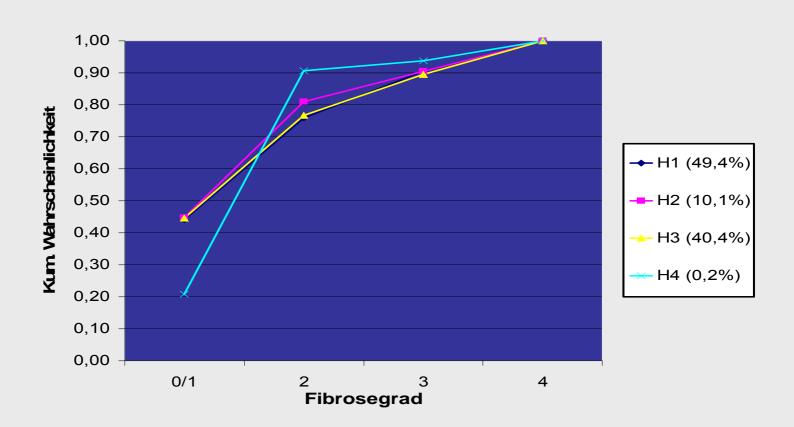
oder bei großem N näherungsweise durch

$$P_{MC} = \frac{\# \left\{ i \mid T \leq T_{\sigma_i}, i = 1, ..., N_{MC} \right\}}{N_{MC}}$$

 σ_i (i=1,..., N_{MC}) zufällig ausgewählte Permutationen vom Grad N.

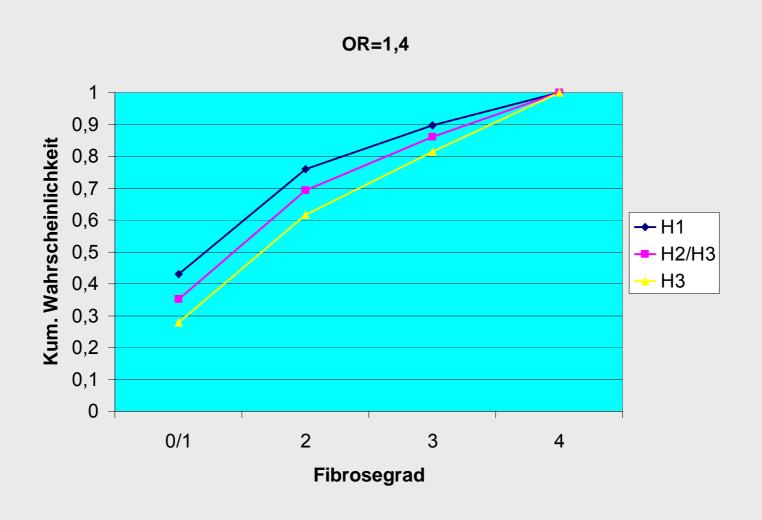
Ergebnis

$$P = 0.96 (N_{MC} = 10000)$$

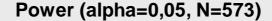


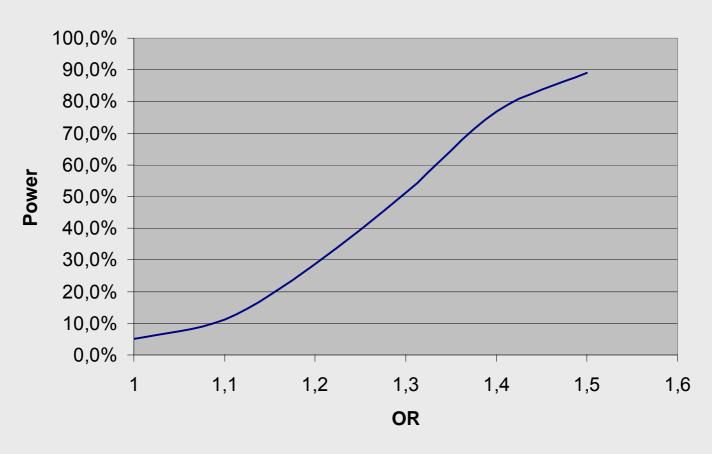
Monte-Carlo Simulationen

Monte-Carlo Simulationen (2)



Monte-Carlo Simulationen (3)





Monte-Carlo Simulationen (4)

Power (alpha=0,05; OR=1,1)

