Introduction	Data Material	Methods	Results	Discussion	References

Investigation of methods to assess the individual relationship between the RR and QT interval of the ECG

Deinhard J¹, Ring A², Held L¹³

GMDS 2006

¹Institut für Statistik, Ludwig-Maximilians-Universität München

²Klinische Biostatistik, Boehringer Ingelheim Pharma GmbH&Co KG, Biberach

³Abteilung Biostatistik, Institut für Sozial- und Präventivmedizin, Universität Zürich

Introduction	Data Material	Methods	Results	Discussion	References
Table of	Contents				

- Electrocardiogram
- Torsade de Pointes
- QT Correction
- 2 Data Material
 - Study Information and Structure of the Data Set
- 3 Methods
 - Concept
 - Formulation

4 Results

- Example: Transformation 1 (parabolic)
- Comparison of Models

Discussion

References

Introduction •••••••	Data Material 00	Methods 00000	Results	Discussion	References
Electrocardiogram					
ECG Wave	Form				

Introduction ○●○○○○○	Data Material 00	Methods	Results	Discussion	References
Electrocardiogram					
Scatter Plo	ot of RR/QT	Intervals			

Scatter plot of a subsample of the study data set, including observations of several subjects

<ロ> (四) (四) (日) (日) (日)

(Horacek T. (1998): Der EKG-Trainer. Thieme, Stuttgart)

- Special case of ventricular tachycardy
- Typical "twisted" appearance in the ECG

Introduction	Data Material	Methods	Results	Discussion	References
0000000					
Torsade de Pointes					
Torsade de	Pointes 2				

- Can lead to arrythmia and death
- Can be caused by insufficient repolarisation in heart cells
- Several pharmaceutic agents are known to make TdP more likely
- Relative prolongation of the QT interval can be used as a surrogate endpoint

Introduction	Data Material	Methods	Results	Discussion	References
0000000					
QT Correction					
Problems					

- QT length depends on RR (= 1 / Heart Rate)
- Change of heart rate causes QT effect even if repolarisation is not affected
- No simple linear relationship
- Dependence appears to be individual

Aim: a *corrected* QT interval which can be interpreted independently of the heart rate

Introduction ○○○○○●○	Data Material	Methods 00000	Results	Discussion	References
QT Correction					
Classic App	proaches				

Simple, generally applicable formula?

• Fridericia (1920):
$$QTcF = \frac{RR}{\sqrt[3]{QT}}$$

• Bazett (1920):
$$QTcB = \frac{RR}{\sqrt{QT}}$$

- + easy to calculate
- $\bullet\,+$ depends only on actual RR and QT
- imprecise: often high correlation between RR and QTc, known miscorrection
- - does not account for individual characteristics

Introduction	Data Material	Methods	Results	Discussion	References
000000					
QT Correction					
$QTcB\xspace$ and	QTcF				

Both Fridericia and Bazett imply the same principle:

 $\begin{array}{ll} QT = a \cdot RR^b & \Leftrightarrow \ln QT = \ln a + b \cdot \ln RR & (\text{parabolic}) \end{array}$ Alternatives: $\begin{array}{ll} QT = a + b \cdot RR & (\text{linear}) \\ QT = \exp(a + b \cdot RR) & \Leftrightarrow \ln QT = a + b \cdot RR & (\log/\text{linear}) \end{array}$

Introduction	Data Material ●○	Methods	Results	Discussion	References	
Study Information ar	d Structure of the Data	Set				
General Information about the Study						

- EKG data of a Thorough QT Study performed at Boehringer Ingelheim (see poster BM-17 for details)
- Baseline days of each of the four crossover cycles
- $\bullet~96$ or 144 RR/QT pairs per day and person
- 56 subjects, ≈ 29.000 wave forms overall

Introduction	Data Material ○●	Methods 00000	Results	Discussion	References		
Study Information and Structure of the Data Set							
Structure c	of ECG Recor	rdings					

One ECG wave

Four successive ECG waves

Three sequences within a five minute interval

8 – 12 intervals throughout one day, at different distances

Measurement time points (relative to drug application on the next day):

-0:10	0:40	4:00
0:05	1:00	8:00
0:10	2:00	12:00
0:20	3:00	23:50

イロト イヨト イヨト イヨト

Introduction	Data Material 00	Methods ●○○○○	Results 000000	Discussion	References
Concept					
Modeling					

Find useful models for RR/QT dependence incorporating

- Individual effects
- Imporal correlation of measurements
- Oircadian effects
- \rightarrow Linear Mixed Effects Model including
 - Random effects (intercept and slope) per subject
 - Imporal correlation of residuals
 - Cosinusoidal representation of time

Introduction	Data Material 00	Methods ○●○○○	Results	Discussion	References
Concept					
Models					

Transformation 1	Transformation 2	Transformation 3
(log/log)	(linear)	(log/linear)
$x_{ijkl} = \ln RR_{ijkl}$	$x_{ijkl} = RR_{ijkl}$	$x_{ijkl} = RR_{ijkl}$
$y_{ijkl} = \ln QT_{ijkl}$	$y_{ijkl} = QT_{ijkl}$	$y_{ijkl} = \ln QT_{ijkl}$

- *i*: index of subject
- *j*: index of period (day)
- k: index of time point within day
- *I*: index of repetition within time point
- $t_{ijkl} = t_l$ relative time of observation (x_{ijkl}, y_{ijkl})

Introduction	Data Material	Methods ○○●○○	Results	Discussion	References
Concept					
Models					

solid line: Transformation 1 (log/log), dotted line: Transformation 2 (linear)

dashed line: Transformation 3 (log/linear) blue rhombes/red triangles: data of two individuals

<ロ> (四) (四) (日) (日) (日)

Introduction	Data Material	Methods ○○○●○	Results	Discussion	References
Formulation					
Model with	nout Circadia	n Effect			

$$y_{ijkl} = (a + \alpha_i) + (b + \beta_i) \cdot x_{ijkl} + \epsilon_{ijkl}$$

 $(\alpha_i, \beta_i,)^T \sim N(0, \Sigma), \Sigma$ positive definite $\epsilon_{ij} \sim N(0, R)$ i.i.d. (vector of all observations of subject *i* in day *j*)

•
$$R_{uncorrelated} = \sigma^2 I$$

• $R_{exp} = \sigma^2 \exp\left(\frac{-d_{l_q l_r}}{\rho}\right), \ d_{l_q l_r} = \left|t_{l_q} - t_{l_r}\right|$
• $R_{Gauss} = \sigma^2 \exp\left(\frac{-d_{l_q l_r}^2}{\rho^2}\right), \ d_{l_q l_r} = \left|t_{l_q} - t_{l_r}\right|$

ヨト イヨト イヨト

Introduction	Data Material	Methods ○○○○●	Results	Discussion	References
Formulation					
Model wit	h Circadian	Effect			

$$y_{ijkl} = (a + \alpha_i) + (b + \beta_i) \cdot x_{ijkl} + \sum_{p=1}^{m} \left((c_p + \gamma_{pi}) \cdot \cos \frac{p \cdot t_{ijkl}}{1440} + (d_p + \delta_{pi}) \cdot \sin \frac{p \cdot t_{ijkl}}{1440} \right) + \epsilon_{ijkl}$$

 $(\alpha_i, \beta_i, \gamma_{1i}, \dots, \gamma_{mi}, \delta_{1i}, \dots, \delta_{mi})^T \sim N(0, \Sigma), \Sigma$ positive definite $\epsilon_{ij} \sim N(0, R)$ i.i.d. (vector of all observations of subject *i* in day *j*)

向下 イヨト イヨト

Residuals of all subjects and days, split to time points

line: mean values per time point

Deinhard J¹, Ring A², Held L¹³

Individual relationship between the RR and QT interval

cosinusoidal curves

semivariogram for m=3, $R = \sigma^2 I$

line:m=1 dashed:m=2 dotted:m=3 dot/dash:m=4

"raw" residuals; line: Nadaraya-Watson estimate

⊡ ▶ < ≣ ▶

< E

Introduction	Data Material	Methods	Results ○○●○○○	Discussion	References
Comparison of Models					

Model Selection: Akaike Information Criterion

AIC = -2I + 2d (smaller is better)

- I: Maximum log likelihood
- *d*: Dimension of the model

	Trans-	Trans-	Trans-
	formation 1	formation 2	formation 3
	(\log/\log)	(linear)	(log/linear)
m=0, $R = \sigma^2 I$	-10138	18212	18155
m=1, $R = \sigma^2 I$	-10325	17999	17954
m=2, $R = \sigma^2 I$	-10451	17849	17806
m=3, $R = \sigma^2 I$	-10590	17687	17646
m=3, $R = R_{exp}$	-10904	17366	17311
m=3, $R = R_{Gaub}$	-10588	17689	17555

글 🖌 🖌 글

Introduction	Data Material	Methods 00000	Results	Discussion	References
Comparison of Mo	dels				
External	Validation: 7	est with	Placebo D	Data	

Comparison of Transformations by estimating QT intervals of observations not included in model building

 \Rightarrow Transformation 1 performs best

伺下 イヨト イヨト

Introduction	Data Material	Methods	Results ○○○○●○	Discussion	References
Comparison of Mo	odels				
Individua	al slopes per	subject			

Deinhard J¹, Ring A², Held L¹³ Individual relationship between the RR and QT interval

・ロト ・回ト ・ヨト ・ヨト

Introduction	Data Material 00	Methods	Results ○○○○○●	Discussion	References
Comparison of Mode	els				
Comparis	on of Aggre	gation Me	thods		

Analysis of:

- Full data set (all wave forms)
- One randomly or systematically selected wave form per time point
- Mean values of all wave forms per time point

Estimations of the slope based on the first two methods are similar, while they differ substantially when mean values are used.

Introduction 0000000	Data Material	Methods 00000	Results	Discussion	References
Discussion					

- Parabolic dependence appears to be superior
- Respecting temporal correlation of residuals resonably increases the fit
- Circadian variability can be accounted for by a cosinusoid of third degree for twelve measurement time points in this special configuration

Introduction	Data Material 00	Methods	Results	Discussion	References
Reference	S				

ICH Harmonized Tripartite Guideline. The Clinical Evaluation of QT/QTc Interval Prolongation and Proarrythmic Potential for Non-Antiarrythmic Drugs E14, 12 May 2005

Moss AJ. The QT interval and torsade de pointes. Drug Safety 1999; 21(Suppl 1):5-10

Malik M. Problems of heart rate correction in assessment of drug-induced QT interval prolongation. Journal of Cardiovascular Electrophysiology 2001; 12(4):411-420

Laird N, Ware JH. Random-effects models for longitudinal data. Biometrics 1982; 38:963-974

Omar RZ, Wright EM, Turner RM, Thompson SG. Analysing repeated measurements data: A practical comparison of methods. Statistics in Medicine 1999; 18:1587-1603

Bonnemeier H, Wiegand UKH, Braasch W, Brandes A, Richardt G, Potratz J. Circadian Profile of QT

Interval and QT Interval Variability in 172 Healthy Volunteers. PACE 2003; 26[II]: 377-382

イロン 不同と 不同と 不同と

3