Investigation of methods to assess the individual relationship between the RR and QT interval of the ECG

Deinhard J^{1}, Ring A^{2}, Held L^{13}

GMDS 2006

[^0]
Table of Contents

(1) Introduction

- Electrocardiogram
- Torsade de Pointes
- QT Correction
(2) Data Material
- Study Information and Structure of the Data Set
(3) Methods
- Concept
- Formulation
(4) Results
- Example: Transformation 1 (parabolic)
- Comparison of Models
(5) Discussion
(6) References

Electrocardiogram

ECG Wave Form

Deinhard J^{1}, Ring A^{2}, Held L^{13}

Electrocardiogram

Scatter Plot of RR/QT Intervals

Scatter plot of a subsample of the study data set, including observations of several subjects

Torsade de Pointes

Torsade de Pointes - "Twisting of the points"

(Horacek T. (1998): Der EKG-Trainer. Thieme, Stuttgart)

- Special case of ventricular tachycardy
- Typical "twisted" appearance in the ECG

Torsade de Pointes 2

- Can lead to arrythmia and death
- Can be caused by insufficient repolarisation in heart cells
- Several pharmaceutic agents are known to make TdP more likely
- Relative prolongation of the QT interval can be used as a surrogate endpoint

Problems

- QT length depends on RR (=1/ Heart Rate)
- Change of heart rate causes QT effect even if repolarisation is not affected
- No simple linear relationship
- Dependence appears to be individual

Aim: a corrected QT interval which can be interpreted independently of the heart rate

QT Correction

Classic Approaches

Simple, generally applicable formula?

- Fridericia (1920): $Q T c F=\frac{R R}{\sqrt[3]{Q T}}$
- Bazett (1920): $Q T c B=\frac{R R}{\sqrt{Q T}}$
- + easy to calculate
- + depends only on actual RR and QT
- - imprecise: often high correlation between RR and QTc, known miscorrection
- - does not account for individual characteristics

QT Correction

QTcB and QTcF

Both Fridericia and Bazett imply the same principle:

$$
Q T=a \cdot R R^{b} \quad \Leftrightarrow \ln Q T=\ln a+b \cdot \ln R R \quad \text { (parabolic) }
$$

Alternatives:

$$
\begin{aligned}
& Q T=a+b \cdot R R \\
& Q T=\exp (a+b \cdot R R) \quad \Leftrightarrow \ln Q T=a+b \cdot R R \quad \text { (linear) } \\
& \text { (log/linear) }
\end{aligned}
$$

General Information about the Study

- EKG data of a Thorough QT Study performed at Boehringer Ingelheim (see poster BM-17 for details)
- Baseline days of each of the four crossover cycles
- 96 or 144 RR/QT pairs per day and person
- 56 subjects, ≈ 29.000 wave forms overall

Study Information and Structure of the Data Set

Structure of ECG Recordings

One ECG wave

Four successive ECG waves

Three sequences within a five minute interval
$8-12$ intervals throughout one day, at different distances

Measurement time points (relative to drug application on the next day):

$-0: 10$	$0: 40$	$4: 00$
$0: 05$	$1: 00$	$8: 00$
$0: 10$	$2: 00$	$12: 00$
$0: 20$	$3: 00$	$23: 50$

Modeling

Find useful models for RR/QT dependence incorporating
(1) Individual effects
(2) Temporal correlation of measurements
(3) Circadian effects
\rightarrow Linear Mixed Effects Model including
(1) Random effects (intercept and slope) per subject
(2) Temporal correlation of residuals
(3) Cosinusoidal representation of time

Concept

Models

Transformation 1 (\log / \log)
$x_{i j k l}=\ln R R_{i j k l}$
$y_{i j k l}=\ln Q T_{i j k l}$

Transformation 2 (linear)
$x_{i j k l}=R R_{i j k l}$
$y_{i j k l}=Q T_{i j k l}$

Transformation 3 (log/linear)
$x_{i j k l}=R R_{i j k l}$
$y_{i j k l}=\ln Q T_{i j k l}$

- i : index of subject
- j : index of period (day)
- k : index of time point within day
- l : index of repetition within time point
- $t_{i j k l}=t_{l}$ relative time of observation $\left(x_{i j k l}, y_{i j k l}\right)$

Concept

Models

solid line: Transformation $1(\log / \log)$, dotted line: Transformation 2 (linear)
dashed line: Transformation 3 (log/linear) blue rhombes/red triangles: data of two individuals

Deinhard J^{1}, Ring A^{2}, Held L^{13}
Individual relationship between the RR and QT interval

Formulation

Model without Circadian Effect

$$
y_{i j k l}=\left(a+\alpha_{i}\right)+\left(b+\beta_{i}\right) \cdot x_{i j k l}+\epsilon_{i j k l}
$$

$\left(\alpha_{i}, \beta_{i},\right)^{T} \sim N(0, \Sigma), \Sigma$ positive definite
$\epsilon_{i j} \sim N(0, R)$ i.i.d. (vector of all observations of subject i in day j)

- $R_{\text {uncorrelated }}=\sigma^{2}$ I
- $R_{\exp }=\sigma^{2} \exp \left(\frac{-d_{l_{l \mid r}}}{\rho}\right), d_{l_{q} l_{r}}=\left|t_{l_{q}}-t_{l_{r}}\right|$
- $R_{\text {Gauss }}=\sigma^{2} \exp \left(\frac{-d_{q_{l / r}}^{2}}{\rho^{2}}\right), d_{l_{q} l_{r}}=\left|t_{l_{q}}-t_{l_{r}}\right|$

Formulation

Model with Circadian Effect

$$
\begin{aligned}
y_{i j k l} & =\left(a+\alpha_{i}\right)+\left(b+\beta_{i}\right) \cdot x_{i j k l}+ \\
& +\sum_{p=1}^{m}\left(\left(c_{p}+\gamma_{p i}\right) \cdot \cos \frac{p \cdot t_{i j k l}}{1440}+\left(d_{p}+\delta_{p i}\right) \cdot \sin \frac{p \cdot t_{i j k l}}{1440}\right)+\epsilon_{i j k l}
\end{aligned}
$$

$\left(\alpha_{i}, \beta_{i}, \gamma_{1 i}, \ldots, \gamma_{m i}, \delta_{1 i}, \ldots, \delta_{m i}\right)^{T} \sim N(0, \Sigma), \Sigma$ positive definite $\epsilon_{i j} \sim N(0, R)$ i.i.d. (vector of all observations of subject i in day j)

Residuals by Time

Residuals of all subjects and days, split to time points

$$
\mathrm{m}=0 \text { (no cosinusoid) }
$$

$$
m=3
$$

line: mean values per time point

Cosinusoidal component and semivariogram

cosinusoidal curves

line: $m=1$ dashed: $m=2$ dotted: $m=3$ dot/dash: $m=4$
semivariogram for $\mathrm{m}=3, R=\sigma^{2} /$

"raw" residuals; line: Nadaraya-Watson estimate

Model Selection: Akaike Information Criterion

AIC $=-2 I+2 d$ (smaller is better)

- I: Maximum log likelihood
- d : Dimension of the model

Trans-	Trans-	Trans- formation 1 formation 2
formation 3		
(\log / \log)	$($ linear $/$ linear $)$	

External Validation: Test with Placebo Data

Comparison of Transformations by estimating QT intervals of observations not included in model building

Model: $\mathrm{m}=3, R=R_{\exp }$

Trans-	Trans-	Trans-
formation	formation 2	formation 3
$(\mathrm{log} / \mathrm{log})$	$($ linear $)$	$(\mathrm{log} / \mathrm{linear})$
$\mathbf{6 7 3 . 0 2 6}$	691.531	680.424

\Rightarrow Transformation 1 performs best

Individual slopes per subject

Comparison of Aggregation Methods

Analysis of:

- Full data set (all wave forms)
- One randomly or systematically selected wave form per time point
- Mean values of all wave forms per time point

Estimations of the slope based on the first two methods are similar, while they differ substantially when mean values are used.

Discussion

- Parabolic dependence appears to be superior
- Respecting temporal correlation of residuals resonably increases the fit
- Circadian variability can be accounted for by a cosinusoid of third degree for twelve measurement time points in this special configuration

References

ICH Harmonized Tripartite Guideline. The Clinical Evaluation of QT/QTc Interval Prolongation and Proarrythmic Potential for Non-Antiarrythmic Drugs E14, 12 May 2005

Moss AJ. The QT interval and torsade de pointes. Drug Safety 1999; 21(Suppl 1):5-10
Malik M. Problems of heart rate correction in assessment of drug-induced QT interval prolongation. Journal of Cardiovascular Electrophysiology 2001; 12(4):411-420

Laird N, Ware JH. Random-effects models for longitudinal data. Biometrics 1982; 38:963-974
Omar RZ, Wright EM, Turner RM, Thompson SG. Analysing repeated measurements data: A practical comparison of methods. Statistics in Medicine 1999; 18:1587-1603

Bonnemeier H, Wiegand UKH, Braasch W, Brandes A, Richardt G, Potratz J. Circadian Profile of QT Interval and QT Interval Variability in 172 Healthy Volunteers. PACE 2003; 26[II]: 377-382

[^0]: ${ }^{1}$ Institut für Statistik, Ludwig-Maximilians-Universität München
 ${ }^{2}$ Klinische Biostatistik, Boehringer Ingelheim Pharma GmbH\&Co KG, Biberach
 ${ }^{3}$ Abteilung Biostatistik, Institut für Sozial- und Präventivmedizin, Universität Zürich

