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I Junge mit Verletzungen in der linken Gehirnhälfte,
epileptischer Aktivität

I Ursache: konnatale Toxoplasmose der Mutter während
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1. Summary

In order to develop fast and robust methods for extracting and

visualizing qualitative information from a large high-dimensional

time series

(xt)t∈T = ((xi

t
)m

i=1
)t∈T ,

we want to develop methods combining symbolic dynamics, nomi-

nal statistics, and information theory. The main aim is to identify,

to classify and to discriminate parts of a time series being related

to certain states of a system. Special emphasize is put on symbolic

dynamics related to the ordinal structure of time series and to the

application of the methods to EEG-analysis.
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2. ‘Ordinal’ Symbolic Dynamics

For studying the qualitative behavior of a system, it may be

useful to choose a very coarse-grained description: The state space

is decomposed into a small number of pieces, each coded by a sym-

bol, and instead of the exact state at a given time the symbol of

the piece containing the state is of interest.

Symbolic dynamics studies dynamical systems and time series

on the base of the symbol sequences obtained by the coarse-graining.

We want to consider symbolic dynamics for universal and robust

decompositions.

Symbolization. The type of symbolic dynamics we are interested

in is based on a finite decomposition D = {D1, D2, . . . , Dn} of the

R
d for some given dimension d. The symbolization of a multidi-

mensional time series - we assume integer time domain T - relays

on a (generalized) delay embedding of the components of the given

time series. We consider a time pattern

τ = (τd−1, τd−2, . . . , τ1, τ0),

defined to be a vector in T
d with τd−1 > τd−2 > . . . > τ1 > τ0 = 0

and assign to a time series component (xi

t
)t∈T the symbol sequence

(ji

t
)t∈T by

j
i

t
= j :⇐⇒ (xt−τd−1

, xt−τd−2
, . . . , xt−τ1

, xt−τ0
) ∈ Dj. (1)

Decompositions with invariance properties. We say that a

decomposition D of R
d is invariant under a map f on R if the

following holds: D separates (q1, q2, . . . , qd) and (r1, r2, . . . , rd) iff D

separates (f(q1), f(q2), . . . , f(qd)) and (f(r1), f(r2), . . . , f(rd)).

Let D
ord

d
(and D̃

ord

d
) be the decomposition which does not sepa-

rate two vectors (q1, q2, . . . , qd) and (r1, r2, . . . , rd) iff

qk < ql ⇔ rk < rl (qk ≤ ql ⇔ rk ≤ rl)

for all k, l ∈ {1, 2, . . . , d} (for all k, l ∈ {1, 2, . . . , d} with k < l).

The following is valid:

• D
ord

d
(D̃ord

d
) is invariant under strictly monotone (strictly in-

creasing) maps.

• If a finite decomposition on R
d is translation-invariant and

scaling-invariant, i.e. invariant under multiplication by posi-

tive numbers, then it is coarser than the decomposition D
ord

d

or coincides with it.

‘Ordinal’ Decompositions. By definition, D
ord

d
divides the R

d

into sets of vectors providing the same up-and-down pattern where

equality of components is featured. Symbolic dynamics for decom-

positions equal to or coarser than D
ord

d
only considers the ordinal

structure of a dynamical system or time series and is in the cen-

ter of our interest. Usually, equality of time series values does not

play that role, such that particularly the symbolic dynamics D̃
ord

d

neglecting equality of vector components is suitable for application

(see below).

160 180 200 220 240
-1

-0.5

0

0.5

1

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

3. Multivariate Symbolic Analysis

Given some dimension d, some time pattern τ and some decom-

position D of the R
d, we consider a time interval of some length δ

ending at a time t. In this interval we determine the distribution of

symbols 1, 2, . . . , n. By pij we denote the relative frequency of the

symbol j related to all m patterns for the i-th channel, and by pj

the ‘pooled’ relative frequency of j related to the mδ symbols for

all channels (compare (1).

The complexity of the whole time series at given time t is mea-

sured by the pooled entropy

Ht = −
n∑

j=1

p·j ln p·j

and of the i-th component by the i-th component entropies

H
i

t
= −

n∑

j=1

pij ln pij. (2)

Moreover, as a measure of similarity of components of the time

series at time t we use contingency

φ
2

t
=

m,n∑

i,j=1

(pij − p·j)
2

p·j

.

Note that if the component distributions of symbols are not too

different in a certain sense, we have

Ht ≈
1

m

m∑

i=1

H
i

t
+

φ
2

t

2
.

This formula being relevant for application can be interpreted as

follows: The overall complexity of the time series at time t decom-

poses into the mean complexity of the channels and a rest quanti-

fying inhomogenity between the channels (see [4]).

A detailed analysis and visualization of this rest can be given

by Correspondence analysis ([3]). This method provides a low-

dimensional representation of similarity and dissimilarity of symbol

distributions in the different time series components.

Demonstration. Fig. 3 provides Ht (fat black curve) and H
i

t

(other curves) for a 19-channel EEG time series of a boy suffering

from epilepsy (D = D̃
ord

4
, τ = (12, 8, 4, 0)). The first plot calculated

from an EEG, which was derived at an age of 8 years, shows strongly

fluctuating entropy curves and low entropies relative to the whole

entropy ensemble for T3 and P3, where P3 is substantially below

the pooled entropy. (The electrode scheme is illustrated in Fig. 1.)

This is in concordance with the fact that the EEG contains much

epileptic activity, with sources in T3 and P3. For example, there is

an epileptic seizure beginning at 228 s.

We have added three short segments of the original EEG, repre-

sented in Fig. 1. The segment on the left shows ‘sharp wave series’

in P3 and T3, indicating epileptic sources, and the right part of the

graphics represents a generalized seizure. Note that the entropies at

P3 and partially at T3 are low both in epileptic and in non-epileptic

periods, which is not indicated by the original EEG (compare the

central and right parts).

At the age of 11 years the boy was implanted a vagus nerve

stimulator, with the aim to reduce the frequency and intensity of

seizures. Fig. 3 displays the entropies for an EEG derived immedi-

ately before, and one and four months after the implantation. In

contrast to the results before implantation, the entropies of P3 and

T3 after implantation are nearly on the same level as the pooled

entropies.

Fig. 2 shows similarity and dissimilarity of time series com-

ponent symbol distributions via Correspondence Analysis (D =

D̃
ord

4
, τ = (3, 2, 1, 0)). The components mapping the right hemi-

sphere of the brain (blue curves) are more ‘concentrated’ than those

mapping the left hemisphere (magenta). Here note that the MRI

(Fig. 1) has revealed lesions predominatly in the left temporal lobe.
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4. Project Details

Generalized Correspondence Analysis. In order to have more

flexibility in measuring and visualizing similarity and dissimilarity

of the time series components we have introduced a Generalized

Correspondence Analysis with a scaling parameter weighting sym-

bol frequencies, and have started to investigate properties of this

method [5]. This methods provides a fast way to check a high-

dimensional time series for parts to be investigated in a further

way, there is however the necessity to quantify results and guaran-

tee reliability. Therefore

• geometric and statistic properties of Generalized Correspon-

dence Analysis

are to be studied in a broader manner for relative frequency ma-

trices and in the framework of multi-dimensional time series. In

particular, tests for comparing subsets of the time series compo-

nents are to be developed.

The full potential of ‘Alternating Conditional Expectation’ and

similar methods related to Correspondence Analysis is to be con-

sidered for developing

• fast visualization algorithms for (Generalized) Corresponden-

ce Analysis plots in the context of high-dimensional time se-

ries.

D̃
ord

d
and the permutation group. Let us have a closer look

to the decomposition D̃
ord

d
. For this (and slightly changed) decom-

positions the pieces describe a permutation of ‘time-ordering’ to

‘value-ordering’. Hence symbolic dynamics based on D̃
ord

d
provides

a discretisation of time series patterns in the permutation group,

which supports natural distance measures and allows ‘differentia-

tion’. We want to investigate

• permutation group based autocorrelation and cross correla-

tion measures

• (multivariate) permutation group valued models.

Bandt and Pompe have introduced the concept of permutation en-

tropy, which is roughly speaking the entropy (2) for one-dimensional

time series when D = D̃
ord

d
. This measure has interesting properties

for one-dimensional dynamical systems, like robustness with respect

to observational and to dynamical noise (see Bandt, Pompe [2]) and

a strong relationship to the Kolmogorov-Sinai entropy (see Bandt

et al. [1]). Since in practice permutation entropy (for small d) not

ever measures what one would understand by the complexity of a

time series and in order to quantify complexity of coupling, we want

to study

• ‘permutation entropy’ of ‘difference’ time series.

Ordinal symbolic dynamics and self-similarity. In the cen-

ter of our project is the general study of

• ordinal symbolic dynamics.

Besides ‘fine’ symbolic dynamics on the base of D
ord

d
, D̃

ord

d
and in

symbolic dynamics related to permutation group based ‘differen-

tiation’, we are interested in ordinal symbolic dynamics providing

‘one-dimensional’ symbol distributions (e.g. ordinal symbolic dy-

namics defined by rank statistics).

Self-affine continuous stochastic processes play an important

role in different fields. The above characterization of translation-

and scaling invariant symbolic dynamics suggests a study of

• self-similar processes on the ordinal level.

In this context special process classes (e.g. Fractional Brownian

motion, correlated random walks) are to be studied and tests for

self-similarity are to be developed.

‘Optimal’ time patterns and symbolic dynamics. In order

to be able to discriminate and identify parts of time series related

to certain states of a system as good as possible, we are interested

in finding

• symbolic dynamics and time patterns for which the measures

considered are discriminating (and identifying) as strong as

possible.

The idea is that an ‘optimal’ time pattern or symbolic dynamics is

deduced by ‘learning’ from models and understood data sets and is

later applied to new data sets. The idea could be useful for analy-

zing very individual data sets as EEG time series are. Generalizing

ordinal symbolic dynamics we want to allow symbolic dynamics

based on

• decompositions of R
d by hyperplanes,

which are simple from the computational viewpoint.
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Ziele für EEG-Analyse und darüber hinaus

I einfache Methoden (für erste und/oder automatische)
explorative (hochdimensionale) Datenanalyse, die

I robust gegenüber Rauschen und (kleinen/monotonen)
Skalenänderungen

I realisierbar durch sehr schnelle und flexible Algorithmen

I Quantifikation und Visualisierung
I zeitlicher Komplexitätsänderungen
I zeitlicher Änderungen der Ähnlichkeit, Unähnlichkeit,

Kopplung zwischen Zeitreihenkomponenten

I Identifikation, Klassifikation and Diskriminierung (von Teilen)
von Zeitreihen, die mit bestimmten ‘Systemzuständen’
assoziiert

I ‘Unterscheidung’ von ‘Determinismus’ und ‘Stochastizität’
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1. Ordinale Zeitreihenanalyse



Idee der symbolischen Dynamik

original

Orbit eines (diskreten) dynamischen Systems, einer Zeitreihe
. . . , x t−4, x t−3, x t−2, x t−1, x t , x t+1, x t+2, x t+3, x t+4

20 40 60 80 100

. . . . . .1 2 3 ... n R

symbolisch
. . . , s t−4, s t−3, s t−2, s t−1, st, s t+1, s t+2, s t+3, s t+4

?



Symbolische Dynamik für Delaykoordinaten2

original

20 40 60 80 100

Dimension d + 1
Delay τ

Rd+1

symbolisch
. . . , s t−4, s t−3, s t−2, s t−1, st, s t+1, s t+2, s t+3, s t+4

. . . τ

?

2
Takens, in: Dynamical Systems and Turbulence, Springer 1981



Ordinale Muster
I gegeben Delay τ ∈ {1, 2, 3, . . .} und Ordnung

d ∈ {1, 2, 3, . . .}
I Delaykoordinaten liefern Vektoren

(xt , xt−τ , . . . , xt−(d−1)τ , xt−dτ ) ∈ Rd+1

I Bestimmung des ‘Ordnungstyps’ dieser Vektoren liefern
Zerlegung des Rd+1 in Mengen gleichen ordinalen Musters
= Permutation πτ

d(t)

Beispiel: (d = 3)

xt−2τ

xt−3τ

xt−1τ

xt−0τ

t− 3τ t− 2τ t− 1τ t− 0τ

xt−2τ >xt−3τ >xt−1τ >xt−0τ

πτ
d(t) = (2, 3, 1, 0)



Analyse der Musterverteilung

I Zählen ordinaler Muster πτ
d(t) in (Teil) einer Zeitreihe

I Analyse der Musterverteilung
I Permutationsentropie3

I andere Maßzahlen4

I multivariate Analysemethoden5, 6

3
Bandt, Pompe, Phys. Rev. Lett. 88 (2002), 174102, auch Misiurewicz 2003

4
K., Sinn, Ordinal analysis of EEG time series, Chaos and Complexity Letters 2 (2006)

5
K., Wittfeld, Int. J. Bifurcation Chaos 14 (2004), 693-704

6
Groth, Visualization and detection of coupling in time series by order recurrence plots. Greifswald 2004



2. Exemplarisch: Entropieanalyse



Die Permutationsentropie

= Shannon-Entropie −
∑

P∈Pd
µ(P) ln µ(P) für Zerlegung nach

ordinalen Mustern Pd

für eindimensionale diskrete dynamische Systeme:

I Robustheit unter dynamischem und Beobachtungsrauschen7

I starke ‘Limes’-Beziehung zur Kolmogorov-Sinai-Entropie8

Theorem:
Ist f stückweise monotone Intervallabbildung and µ ein in-
variantes Maß für f , so ist limd→∞− 1

d

∑
P∈Pd

µ(P) ln µ(P)
die Kolmogorov-Sinai-Entropie von f .

7
Bandt, Pompe, Phys. Rev. Lett. 88 (2002)

8
Bandt, G. Keller, Pompe, Nonlinearity 15 (2002), 1595-1602



Empirische Permutationsentropie (multivariater Ansatz)

I Fenstergröße δ, m Kanäle, n = (d + 1)! ordinale Muster

(hij)
m,n
i ,j=1 =

 relative Häufigkeit von Kombinationen

‘Kanal’ i and ‘Muster’ j

im Zeitintervall [t − δ + 1, t]


m,n

i ,j=1

=


h11 . . . h1j . . . h1n

...
...

...
hi1 . . . hij . . . hin

...
...

...
hm1 . . . hmj . . . hmn


h1· = 1

m ‘Kanal’ 1
...

hj· = 1
m ‘Kanal’ j

...
hm· = 1

m ‘Kanal’ m

‘totale’ h·1 . . . h·j . . . h·n



I ‘totale’ Permutationsentropie:

Et = −
∑n

j=1 h·j ln h·j

I i-th ‘Kanal’-Permutationsentropie:

E i
t = −

∑n
j=1 mhij ln(mhij)

I Kontingenz:

ϕ2
t =

∑m,n
i ,j=1

(hij−hi·h·j)
2

hi·h·j
= 1

m

∑m
i=1

(∑n
j=1

(mhij−h·j)2
h·j

)
Wenn ‘Kanal’-Musterverteilung nicht ‘zu verschieden’:

Et ≈ 1
m

m∑
i=1

E i
t +

ϕ2
t

2

‘totale Kompl.’ ≈ ‘mittlere Kompl.’ + ‘Inhomogenität’



Beispiel: Vagus-Stimulation und EEG-Analyse

‘totale’ und ‘Kanal-’ Permutationsentropie, gefenstert (2 s), d = 3, τ = 4
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1. Summary

In order to develop fast and robust methods for extracting and

visualizing qualitative information from a large high-dimensional

time series

(xt)t∈T = ((xi

t
)m

i=1
)t∈T ,

we want to develop methods combining symbolic dynamics, nomi-

nal statistics, and information theory. The main aim is to identify,

to classify and to discriminate parts of a time series being related

to certain states of a system. Special emphasize is put on symbolic

dynamics related to the ordinal structure of time series and to the

application of the methods to EEG-analysis.

MRI

FP2FP1

F4F3

C4C3

P4P3

O2O1

F8F7

T4T3

T6T5

FZ

CZ

PZ

Electrode positions

3 4 5 6 7 204 205 206 207 208 240 241 242 243 244

EEG time series

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

2. ‘Ordinal’ Symbolic Dynamics

For studying the qualitative behavior of a system, it may be

useful to choose a very coarse-grained description: The state space

is decomposed into a small number of pieces, each coded by a sym-

bol, and instead of the exact state at a given time the symbol of

the piece containing the state is of interest.

Symbolic dynamics studies dynamical systems and time series

on the base of the symbol sequences obtained by the coarse-graining.

We want to consider symbolic dynamics for universal and robust

decompositions.

Symbolization. The type of symbolic dynamics we are interested

in is based on a finite decomposition D = {D1, D2, . . . , Dn} of the

R
d for some given dimension d. The symbolization of a multidi-

mensional time series - we assume integer time domain T - relays

on a (generalized) delay embedding of the components of the given

time series. We consider a time pattern

τ = (τd−1, τd−2, . . . , τ1, τ0),

defined to be a vector in T
d with τd−1 > τd−2 > . . . > τ1 > τ0 = 0

and assign to a time series component (xi

t
)t∈T the symbol sequence

(ji

t
)t∈T by

j
i

t
= j :⇐⇒ (xt−τd−1

, xt−τd−2
, . . . , xt−τ1

, xt−τ0
) ∈ Dj. (1)

Decompositions with invariance properties. We say that a

decomposition D of R
d is invariant under a map f on R if the

following holds: D separates (q1, q2, . . . , qd) and (r1, r2, . . . , rd) iff D

separates (f(q1), f(q2), . . . , f(qd)) and (f(r1), f(r2), . . . , f(rd)).

Let D
ord

d
(and D̃

ord

d
) be the decomposition which does not sepa-

rate two vectors (q1, q2, . . . , qd) and (r1, r2, . . . , rd) iff

qk < ql ⇔ rk < rl (qk ≤ ql ⇔ rk ≤ rl)

for all k, l ∈ {1, 2, . . . , d} (for all k, l ∈ {1, 2, . . . , d} with k < l).

The following is valid:

• D
ord

d
(D̃ord

d
) is invariant under strictly monotone (strictly in-

creasing) maps.

• If a finite decomposition on R
d is translation-invariant and

scaling-invariant, i.e. invariant under multiplication by posi-

tive numbers, then it is coarser than the decomposition D
ord

d

or coincides with it.

‘Ordinal’ Decompositions. By definition, D
ord

d
divides the R

d

into sets of vectors providing the same up-and-down pattern where

equality of components is featured. Symbolic dynamics for decom-

positions equal to or coarser than D
ord

d
only considers the ordinal

structure of a dynamical system or time series and is in the cen-

ter of our interest. Usually, equality of time series values does not

play that role, such that particularly the symbolic dynamics D̃
ord

d

neglecting equality of vector components is suitable for application

(see below).
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3. Multivariate Symbolic Analysis

Given some dimension d, some time pattern τ and some decom-

position D of the R
d, we consider a time interval of some length δ

ending at a time t. In this interval we determine the distribution of

symbols 1, 2, . . . , n. By pij we denote the relative frequency of the

symbol j related to all m patterns for the i-th channel, and by pj

the ‘pooled’ relative frequency of j related to the mδ symbols for

all channels (compare (1).

The complexity of the whole time series at given time t is mea-

sured by the pooled entropy

Ht = −
n∑

j=1

p·j ln p·j

and of the i-th component by the i-th component entropies

H
i

t
= −

n∑

j=1

pij ln pij. (2)

Moreover, as a measure of similarity of components of the time

series at time t we use contingency

φ
2

t
=

m,n∑

i,j=1

(pij − p·j)
2

p·j

.

Note that if the component distributions of symbols are not too

different in a certain sense, we have

Ht ≈
1

m

m∑

i=1

H
i

t
+

φ
2

t

2
.

This formula being relevant for application can be interpreted as

follows: The overall complexity of the time series at time t decom-

poses into the mean complexity of the channels and a rest quanti-

fying inhomogenity between the channels (see [4]).

A detailed analysis and visualization of this rest can be given

by Correspondence analysis ([3]). This method provides a low-

dimensional representation of similarity and dissimilarity of symbol

distributions in the different time series components.

Demonstration. Fig. 3 provides Ht (fat black curve) and H
i

t

(other curves) for a 19-channel EEG time series of a boy suffering

from epilepsy (D = D̃
ord

4
, τ = (12, 8, 4, 0)). The first plot calculated

from an EEG, which was derived at an age of 8 years, shows strongly

fluctuating entropy curves and low entropies relative to the whole

entropy ensemble for T3 and P3, where P3 is substantially below

the pooled entropy. (The electrode scheme is illustrated in Fig. 1.)

This is in concordance with the fact that the EEG contains much

epileptic activity, with sources in T3 and P3. For example, there is

an epileptic seizure beginning at 228 s.

We have added three short segments of the original EEG, repre-

sented in Fig. 1. The segment on the left shows ‘sharp wave series’

in P3 and T3, indicating epileptic sources, and the right part of the

graphics represents a generalized seizure. Note that the entropies at

P3 and partially at T3 are low both in epileptic and in non-epileptic

periods, which is not indicated by the original EEG (compare the

central and right parts).

At the age of 11 years the boy was implanted a vagus nerve

stimulator, with the aim to reduce the frequency and intensity of

seizures. Fig. 3 displays the entropies for an EEG derived immedi-

ately before, and one and four months after the implantation. In

contrast to the results before implantation, the entropies of P3 and

T3 after implantation are nearly on the same level as the pooled

entropies.

Fig. 2 shows similarity and dissimilarity of time series com-

ponent symbol distributions via Correspondence Analysis (D =

D̃
ord

4
, τ = (3, 2, 1, 0)). The components mapping the right hemi-

sphere of the brain (blue curves) are more ‘concentrated’ than those

mapping the left hemisphere (magenta). Here note that the MRI

(Fig. 1) has revealed lesions predominatly in the left temporal lobe.
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4. Project Details

Generalized Correspondence Analysis. In order to have more

flexibility in measuring and visualizing similarity and dissimilarity

of the time series components we have introduced a Generalized

Correspondence Analysis with a scaling parameter weighting sym-

bol frequencies, and have started to investigate properties of this

method [5]. This methods provides a fast way to check a high-

dimensional time series for parts to be investigated in a further

way, there is however the necessity to quantify results and guaran-

tee reliability. Therefore

• geometric and statistic properties of Generalized Correspon-

dence Analysis

are to be studied in a broader manner for relative frequency ma-

trices and in the framework of multi-dimensional time series. In

particular, tests for comparing subsets of the time series compo-

nents are to be developed.

The full potential of ‘Alternating Conditional Expectation’ and

similar methods related to Correspondence Analysis is to be con-

sidered for developing

• fast visualization algorithms for (Generalized) Corresponden-

ce Analysis plots in the context of high-dimensional time se-

ries.

D̃
ord

d
and the permutation group. Let us have a closer look

to the decomposition D̃
ord

d
. For this (and slightly changed) decom-

positions the pieces describe a permutation of ‘time-ordering’ to

‘value-ordering’. Hence symbolic dynamics based on D̃
ord

d
provides

a discretisation of time series patterns in the permutation group,

which supports natural distance measures and allows ‘differentia-

tion’. We want to investigate

• permutation group based autocorrelation and cross correla-

tion measures

• (multivariate) permutation group valued models.

Bandt and Pompe have introduced the concept of permutation en-

tropy, which is roughly speaking the entropy (2) for one-dimensional

time series when D = D̃
ord

d
. This measure has interesting properties

for one-dimensional dynamical systems, like robustness with respect

to observational and to dynamical noise (see Bandt, Pompe [2]) and

a strong relationship to the Kolmogorov-Sinai entropy (see Bandt

et al. [1]). Since in practice permutation entropy (for small d) not

ever measures what one would understand by the complexity of a

time series and in order to quantify complexity of coupling, we want

to study

• ‘permutation entropy’ of ‘difference’ time series.

Ordinal symbolic dynamics and self-similarity. In the cen-

ter of our project is the general study of

• ordinal symbolic dynamics.

Besides ‘fine’ symbolic dynamics on the base of D
ord

d
, D̃

ord

d
and in

symbolic dynamics related to permutation group based ‘differen-

tiation’, we are interested in ordinal symbolic dynamics providing

‘one-dimensional’ symbol distributions (e.g. ordinal symbolic dy-

namics defined by rank statistics).

Self-affine continuous stochastic processes play an important

role in different fields. The above characterization of translation-

and scaling invariant symbolic dynamics suggests a study of

• self-similar processes on the ordinal level.

In this context special process classes (e.g. Fractional Brownian

motion, correlated random walks) are to be studied and tests for

self-similarity are to be developed.

‘Optimal’ time patterns and symbolic dynamics. In order

to be able to discriminate and identify parts of time series related

to certain states of a system as good as possible, we are interested

in finding

• symbolic dynamics and time patterns for which the measures

considered are discriminating (and identifying) as strong as

possible.

The idea is that an ‘optimal’ time pattern or symbolic dynamics is

deduced by ‘learning’ from models and understood data sets and is

later applied to new data sets. The idea could be useful for analy-

zing very individual data sets as EEG time series are. Generalizing

ordinal symbolic dynamics we want to allow symbolic dynamics

based on

• decompositions of R
d by hyperplanes,

which are simple from the computational viewpoint.
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3. Exemplarisch: Clusterung

ordinaler Musterverteilungen



Idee

I Zerlegung aller EEG-Komponenten (Kanäle) in Abschnitte
gleicher Länge

I Bestimmung der jeweiligen ordinalen Musterverteilungen

I Clusterung bezüglich eine Abstands von Musterverteilungen

d = 3, τ = 1, Abschnitte von 2s, Variationsabstand, Complete Linkage, 2 Cluster



Datamining

I gleichzeitige Visualisierung verschiedener EEG-Daten


