Meta-Analysis of Clinical Trials with Ordinal Outcome using Random Cut-Points Theory

Henning Henke and Guido Knapp

Fachbereich Statistik, Universität Dortmund

51th Annual Meeting of the German Medical Informatics, Biometry and Epidemiology Society (GMDS 2006)

10-14 September 2006, Leipzig

- Methods for a single trial
- Meta-Analytic Methods
- Simulation
- 4 Final Remarks
- Outlook

Notation in a single trial

usual $2 \times k$ - table

			Category	
	1	2		k
Treatment (Y_1)	p_{11}	p_{12}		p_{1k}
Control (Y_2)	p_{21}	<i>p</i> ₂₂		p_{2k}

Category
$$1 = "best", ..., Category k = "worst"$$

Usually
$$Y_i \sim \mathcal{M}(p_{i1}, p_{i2}, ..., p_{ik}), \qquad i = 1, 2$$

4□ > 4□ > 4 = > 4 = > = 90

Assumption

$$Y_1 \sim H_1$$
 and $Y_2 \sim H_2$

• H_1 , H_2 continuous cumulative density functions (cdf)

Problem: How to divide observations from H_1 resp H_2 in sensible categories?

Random Cut-Point Model

Let

Methods

$$\Theta = \{\theta_i\}_{i=1}^{k-1}$$

be a random sample with cdf F, taken without replacement

Make use of the order statistic

$$\theta_{(1)} < \theta_{(2)} < \cdots < \theta_{(k-1)}$$

and add

$$\theta_{(0)} = -\infty$$
 and $\theta_{(k)} = \infty$

Random Cut-Point Model

Let x be an unobservable realisation of a random sample of n_i values with cdf H_i , i = 1, 2.

Then n_{ij} is the number of observations where

$$\theta_{(j-1)} < x < \theta_{(j)}, \quad j = 1, ..., k.$$

 \implies realisation in category j

Methods

Example

Methods

Random Cut-Point Model

Assumption: n_1 , n_2 and k known a priori

Then

Methods

$$p_{ij} = \int_{\theta_{(i-1)}}^{\theta_{(j)}} dH_i(x) = H_i(\theta_{(j)}) - H_i(\theta_{(j-1)})$$

is a random variable

Random Cut-Point
$$Y_i \sim \mathcal{M}(P_i)$$
 $P_i = \{p_{ij}\}$ random $i = 1, 2$

Conventional Approach
$$Y_i \sim \mathcal{M}\left(\Pi_i\right)$$
 Π_i fixed $i=1,2$

4日 → 4日 → 4 目 → 4目 → 990

Mann-Whitney-Test

Test of no difference in Treatment or Placebo

• Mann-Whitney-Statistic (Edwardes 1997)

$$\hat{U} = n_1 n_2 \left(\sum_{j} \sum_{\ell < j} \hat{p}_{1\ell} \, \hat{p}_{2j} + \sum_{j} \hat{p}_{1j} \, \hat{p}_{2j}/2 - 1/2 \right)$$

•
$$\operatorname{Var}_{MW}(U|H_1=H_2) = \frac{n_1 \ n_2 \ (n+1)}{12} - \frac{n_1 \ n_2}{12} \frac{\sum_{j=1}^k \ (n_{+j}^3 - n_{+j})}{n(n-1)}$$

• $Var(U|F=H_1=H_2) = E[Var_{MW}(U|H_1=H_2)]$

$$= \frac{n_1 n_2 (n+1)}{12} - \frac{n_1 n_2 (k+n)}{2 (k+1) (k+2)}$$

Asymptotic MW

$$\frac{\hat{U}}{\sqrt{\mathsf{Var}_{MW}(U|H_1=H_2)}} \stackrel{\mathsf{H_0}}{\sim} \mathcal{N}(0, 1)$$

Edwardes (2000) RC

$$\frac{\hat{U}}{\sqrt{\text{Var}(U|F=H_1=H_2)}} \stackrel{H_0}{\sim} R_k$$

 R_k known exact for k=2and by simulation for k>2

Meta-Analytic Methods

Let \hat{y}_i be an estimator for the treatment effect of study i, i = 1, ..., L

General random-effects model of meta-analysis

$$\hat{y}_i \sim \mathcal{N}\left(\mu, \sigma_i^2 + \tau^2\right)$$

Note: Estimate of σ_i^2 is available from each trial

$$\tau^2 = 0 \Longrightarrow \text{Fixed effects model}$$

In general: given some weights b_i with

$$\hat{\mu} = \sum_{i=1}^{L} b_i \hat{y}_i, \qquad \sum_{i=1}^{L} b_i = 1$$

Two possibilities for the choice of b_i

- using sample sizes
- using variances

Approach of Hartung / Böckenhoff / Knapp (2003)

- Scoring of the studies by weights λ_i with
- with $\lambda_i = T_{N_i} / \sum_{j=1}^L T_{N_j}$ with $T_{N_i} = n_{i1} n_{i2} / (n_{i1} + n_{i2})$
- Direct estimator of variance

$$\widehat{\mathsf{Var}}\left(\hat{\mu}\right) = \frac{1}{1 + \sum_{i=1}^{L} \frac{\lambda_j^2}{1 - 2\lambda_i}} \sum_{j=1}^{L} \frac{\lambda_j^2}{1 - 2\lambda_j} \left(\hat{y}_i - \sum_{m=1}^{L} \lambda_m \hat{y}_m\right)^2$$

Fixed Effects Model

Let be
$$\nu_i = \frac{1}{\sigma_i^2}$$
, $\nu = \sum_{i=1}^L \nu_i$ \Longrightarrow $\hat{\mu}_{FE} = \sum_{i=1}^L \frac{\nu_i}{\nu} \hat{y}_i$

Random Effects Model

Let be
$$\omega_i = \frac{1}{\tau^2 + \sigma_i^2}$$
, $\omega = \sum_{i=1}^L \omega_i \implies \hat{\mu}_{RE} = \sum_{i=1}^L \frac{\omega_i}{\omega} \hat{y}_i$

Reject hypothesis of no treatment difference if

$$\psi_1 = \frac{|\hat{\mu}_{FE}|}{\sqrt{(1/\nu)}} > u_{1-\alpha/2}$$
 resp. $\psi_2 = \frac{|\hat{\mu}_{RE}|}{\sqrt{(1/\omega)}} > u_{1-\alpha/2}$

◆ロ > ◆母 > ◆ き > ◆き > き の < ○</p>

Direct estimator for the variance of μ is given by

$$q = \frac{1}{L-1} \sum_{i=1}^{L} \frac{\omega_i}{\omega} (\hat{y}_i - \hat{\mu}_{RE})^2$$

Hartung, Knapp (2001): reject hypothesis of no treatment difference if

$$\psi_2 = \frac{|\hat{\mu}_{RE}|}{\sqrt{q}} > t_{L-1; 1-\alpha/2}$$

- null hypothesis of no treatment differences
- L = 6 or L = 12 studies included
- analysis in conventional in random cut-point model
- prescribed level $\alpha = 0.05$
- 25.000 replications

Conventional MW

Random Cutpoint MW

Some Simulation Results

L=6 trials

$ au^2$	FE	RE	HK	FE	RE	HK	SSW

•	· -			'-			55
0.0	4.99	3.72	5.11	5.10	7.06	5.03	5.45
0.1	5.27	3.93	4.76	6.37	6.71	4.95	4.68
0.2	7.31	5.04	5.01	11.24	7.56	5.05	5.03
0.5	18.57	8.39	4.93	28.90	9.60	4.97	4.75
1.0	41.26	11.27	5.33	49.44	11.45	5.11	5.51
1.5	54.26	13.47	5.12	59.12	11.95	5.01	5.58

GMDS, Leipzig, 2006 Henke H, Knapp G

Some Simulation Results

L = 12 trials Conventional MW Random Cutpoint MW

$ au^2$	FE	RE	HK	FE	RE	HK	SSW
0.0	5.00	4.07	4.78	5.63	6.18	4.69	4.90
0.1	5.43	4.03	4.88	7.66	6.30	5.00	4.95
0.2	7.71	5.40	5.38	15.77	7.34	5.17	5.30
0.5	18.84	7.29	4.96	29.44	7.68	4.95	5.46
1.0	40.47	7.89	5.32	49.10	8.10	5.25	5.48
1.5	52.17	8.09	5.44	58.07	8.33	5.08	5.56

GMDS, Leipzig, 2006 Henke H, Knapp G

Some Simulation Results

Summary

- variance weighting by using fixed effects or conventional random effects do not hold prescribed level especially in model with random cut point
- variance weighting by Hartung / Knapp and assuming random cut-point theory hold prescribed level satisfactorily
- alternative approach (Hartung / Böckenhoff / Knapp) is to taken into account

Final Remarks

Methods

 random cut-point theory may be considered as a method in meta-analysis of trials with ordinal outcome

 approach by Hartung / Böckenhoff / Knapp (2003) yields good result without much complexity

 otherwise variance weighting by Hartung/Knapp (2001) should be considered

Outlook

Methods

ullet assign Agresti's lpha, generalized Risk Ratio and Risk Difference into random cut-point model

 analyse different link function between random cut-points and underlying continuum

Outlook

Methods Meta-Analytic Methods Simulation Final Remarks Outlook

References

Edwardes MD (1997). Univariate random cut-points theory for the analysis of ordered categorical data. *Journal of the American Statistical Association*, **92**, 1114-1123.

Edwardes MD (2000). Implications of random cut-points theory for the Mann-Whitney and binomial tests. *Canadian Journal of Statistics*, **28**, 427-438.

Hartung J, Böckenhoff A, Knapp G (2003). Generalized Cochran-Wald statistics in combining of experiments. *Journal of Statistical Planning and Inference*, **113**, 215–237.

Hartung J, Knapp G (2001). A refined method for the meta-analysis of controlled clinical trials with binary outcome. *Statistics in Medicine*, **20**, 3875–3889.

Mann HB, Whitney, DR (1947). On a test whether one of two random variables is stochastically larger than the other. *Annals of Mathematical Statistics*. **18**, 50-60.

GMDS, Leipzig, 2006 Henke H, Knapp G