Statistical Inference following Self–Designing Clinical Trials with Binary Response

Wibke Stansen and Joachim Hartung

Department of Statistics, University of Dortmund

51th Annual Meeting of the German Medical Informatics, Biometry and Epidemiology Society,

10-14 September 2006, Leipzig

▲ロト ▲団ト ▲ヨト ▲ヨト 三回 のへの

Outline

2 Interval and Point Estimation

3 Clinical Trials with Binary Response

4 Final Remarks

Self–Designing Clinical Trials

- introduction of "self-designing clinical trials" by Fisher (1998, Statist. Med.) for general setting of normal variables with known variances
- in Hartung (2001, Contr. Clin. Trials; 2006, Biom. J.) the distributional restriction is lifted by using a combining method of p-values
 - inverse normal method
- adaptive choice of both sample sizes and weights of the several study parts
- the rejection of the null hypothesis is tested just once at the end of the trial

Of Interest

 \bullet consider for a real valued parameter θ the test problem

$$H_0: \theta = 0$$
 versus $H_1: \theta > 0$

- test of level $\alpha/2$
- confidence interval for θ of level $1-\alpha$
- study is performed in *K* study parts where *K* is a finite random variable

Inverse Normal Method

in each step k, k = 1, ..., K:

- $\hat{\theta}_k$ unbiased estimator of θ
- test statistic T_k for testing H_0 vs. H_1 assumption:
 - *T_k* is continuously distributed, otherwise approximative (binary case in detail later)
 - $T_k = T_k(\hat{ heta}_k)$ is (strictly) monotone increasing in $\hat{ heta}_k$

 $\hookrightarrow T_k(\hat{ heta}_k - heta)$ is (strictly) monotone decreasing in heta

• p-value
$$p_k = p_k(heta) = 1 - F_{H_0}(T_k(\hat{ heta}_k - heta))$$

• transformation
$$z_k = \Phi^{-1}(1-p_k) \sim N(0,1)$$
 for true ℓ

Inverse Normal Method

• defining a sequence of nonnegative weights $w_1, ..., w_k, ...$ adaptively:

$$w_k = \hat{w}\{stage(0), ..., stage(k-1)\}$$

• with probability one under H_0 there exists a finite (random) K with

$$\sum_{k=1}^{K} w_k^2 = \sum_{k=1}^{\infty} w_k^2 = 1$$

then
$$Z_{\mathcal{K}} = \sum_{k=1}^{\mathcal{K}} w_k \; z_k = \sum_{k=1}^{\infty} w_k \; z_k \; \sim \; \mathcal{N}(0,1) \quad ext{for true } heta$$

• decision rule: H_0 is rejected at level $\frac{\alpha}{2}$ if $Z_{K|\theta=0} > \Phi^{-1}\left(1-\frac{\alpha}{2}\right)$

Practical Aspects

- specification of a lower bound for the weight of stage k
 thus maximal number of stages is bounded
- also useful: specification of a minimal and maximal number of patients per stage
- during the course of the study design adaptions are possible and at every stage the next can be planned as the last one
- real planned studies for instance:
 - breast cancer study
 - Parkinson's disease study

Comment: fixing the weights a priori

 \implies nearly an adaptive group sequential design of O'Brien and Fleming type (see Hartung, 2006, Biom. J.)

Overall p-Value

• overall p-value at trial termination:

$$p(\theta) = 1 - \Phi(Z_{\mathcal{K}}(\theta))$$

- $p(\theta)$ is a pivotal quantity increasing in θ
- $p(\theta)$ follows an uniform distribution F on [0,1]

A B + A B +

Confidence Interval and Point Estimator

construction of an $(1 - \alpha)$ -confidence interval for θ at the end of the trial

(see also: Liu and Chi, 2001; Wassmer, 2003; Hartung and Knapp, 2006)

Iower and upper bound:

$$\hat{ heta}_L = p^{-1}(lpha/2)$$
 and $\hat{ heta}_U = p^{-1}(1-lpha/2)$

• midpoint of the confidence interval:

$$\hat{\theta}_{1/2} = p^{-1}(1/2)$$

 \hookrightarrow median unbiased estimator for θ

Binary Outcomes

• parallel group design with

$$X_1 \sim B(n_1, p_1)$$
 and $X_2 \sim B(n_2, p_2)$

- parameters of interest:
 - risk difference: $D = p_1 p_2$
 - logarithmic risk ratio: $\log RR = \log(p_1/p_2)$
 - logarithmic odds ratio:

$$\log OR = \log \left(rac{p_1/(1-p_1)}{p_2/(1-p_2)}
ight)$$

Notation

fourfold table at stage k

treatment	success	failure	total
1	<i>n</i> _{11,<i>k</i>}	<i>n</i> _{12,<i>k</i>}	n_{1k}
2	n _{21,k}	<i>n</i> _{22,<i>k</i>}	<i>n</i> _{2k}
	$n_{11,k} + n_{21,k}$	$n_{12,k} + n_{22,k}$	n _k

æ

< E ► < E

Risk Difference

• estimation of $D = p_1 - p_2$ at stage k:

$$\hat{D}_k = \hat{p}_{1k} - \hat{p}_{2k} = \frac{n_{11,k}}{n_{1k}} - \frac{n_{21,k}}{n_{2k}}$$

• estimation of the variance of \hat{D}_k at stage k:

$$\widehat{Var}(\hat{D}_k) = \widehat{Var}(\hat{p}_{1k}) + \widehat{Var}(\hat{p}_{2k}) = \frac{\hat{p}_{1k}(1-\hat{p}_{1k})}{n_{1k}-1} + \frac{\hat{p}_{2k}(1-\hat{p}_{2k})}{n_{2k}-1}$$

- (E

Logarithmic Risk Ratio

• estimation of log $RR = \log(p_1/p_2)$ at stage k:

$$\log \widehat{RR}_{k} = \log (\hat{p}_{1k} / \hat{p}_{2k}) = \log \left(\frac{n_{11,k} / n_{1k}}{n_{21,k} / n_{2k}} \right)$$

• estimation of the variance of log \widehat{RR}_k at stage k:

$$\widehat{Var}(\log \widehat{RR}_k) = \frac{1}{n_{11,k}} - \frac{1}{n_{1k}} + \frac{1}{n_{21,k}} - \frac{1}{n_{2k}}$$

Logarithmic Odds Ratio

• estimation of log $OR = \log((p_1/(1-p_1))/(p_2/(1-p_2)))$ at stage k:

$$\log \widehat{OR}_{k} = \log \left(\frac{\hat{p}_{1k}/(1-\hat{p}_{1k})}{\hat{p}_{2k}/(1-\hat{p}_{2k})} \right) = \log \left(\frac{n_{11,k}}{n_{12,k}} \frac{n_{22,k}}{n_{12,k}} \right)$$

• estimation of the variance of log \widehat{OR}_k at stage k:

$$\widehat{Var}(\log \widehat{OR}_k) = \frac{1}{n_{11,k}} + \frac{1}{n_{12,k}} + \frac{1}{n_{21,k}} + \frac{1}{n_{22,k}}$$

Characteristics of the Test Statistic

• Test Statistic at stage k:

$$T_k = rac{\hat{ heta}_k - heta}{\sqrt{\widehat{ extsf{Var}}(\hat{ heta}_k)}} \stackrel{ extsf{appr.}}{\sim} N(0,1)$$

•
$$\frac{\partial T_k}{\partial \theta} = \frac{-1}{\sqrt{\cdots}} < 0 \Longrightarrow T_k$$
 is strictly monotone decreasing in θ

-

Example: Logarithmic Risk Ratio

 $\alpha = 0.05$

stage	sample size	weight	log risk	p–value
k	per group	W _k	ratio	p_k
1	20	0.447	0.368	0.108
2	63	0.559	0.288	0.024
3	56	0.698	0.381	0.009

test decision:

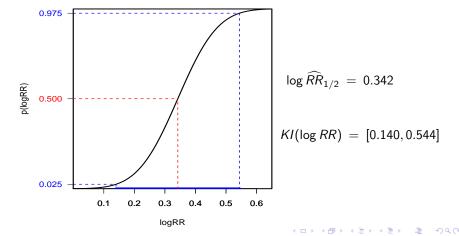
$$Z_{3|\log RR=0}=3.320>\Phi^{-1}(1-0.025)\Longrightarrow$$
 rejection of H_0

after trial termination:

- estimation of log $RR = \log(p_1/p_2)$
- construction of an 95%-confidence interval for log RR

Example: Logarithmic Risk Ratio

overall p-value: $p(\log RR) = 1 - \Phi(Z_{\mathcal{K}}(\log RR))$



Some Simulation Results

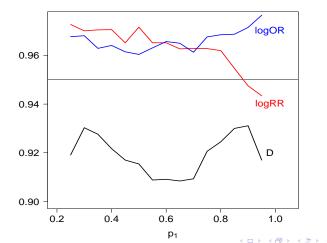
- construction of a confidence interval with confidence level 95% and median unbiased estimation of *D*, log *RR* and log *OR*
 - \hookrightarrow investigation of the
 - coverage probability of the confidence interval
 - average length of the confidence interval
 - point estimation
- adaptive choices of sample sizes and weights: learning rules of Hartung (2001, Contr. Clin. Trials)

• number of realized stages: range: $1 \le K \le 6$, mean: $\overline{K} \approx 3$

Final Remarks

Coverage Probability of the Confidence Interval

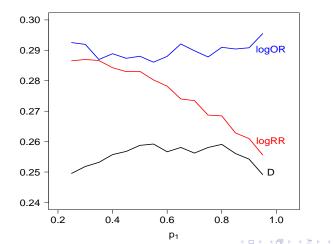
• $D = \log RR = \log OR = 0.2$ fixed, $p_1 = 0.25, 0.3, ..., 0.95$



Wibke Stansen, Joachim Hartung

Average Length of the Confidence Interval

• $D = \log RR = \log OR = 0.2$ fixed, $p_1 = 0.25, 0.3, ..., 0.95$

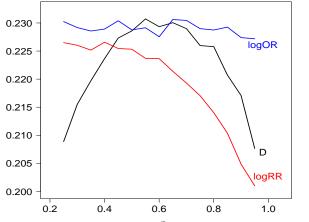


GMDS, Leipzig 2006

Wibke Stansen, Joachim Hartung

Median unbiased Estimation

• $D = \log RR = \log OR = 0.2$ fixed, $p_1 = 0.25, 0.3, ..., 0.95$

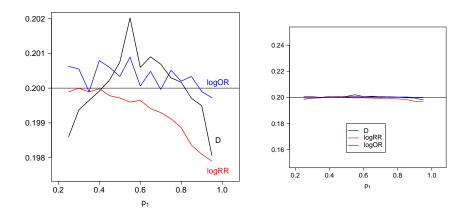


p₁

Wibke Stansen, Joachim Hartung

Empirical Median of the Estimator

• $D = \log RR = \log OR = 0.2$ fixed, $p_1 = 0.25, 0.3, ..., 0.95$



Final Remarks

risk difference:

• using test statistics with an improved estimator of the variance of \hat{D} or continuity corrected test statistics results in less liberal confidence intervals

(Stansen and Hartung, talk at the conference "Evaluation im Gesundheitswesen", Bochum, 2006)

logarithmic risk ratio:

• improvements for the estimator of the variance of $\log \widehat{RR}$ have been worked out

but: log RR is not symmetric around 1/2

 \implies improvement is possible on one side only

Final Remarks

logarithmic odds ratio:

- the estimator of the variance of $\log OR$ can be improved by using the results of Hartung and Knapp (2004)
 - \implies resulting confidence interval is less conservative

References

- Fisher, L. (1998). Self-designing clinical trials. Statistics in Medicine, 17, 1551–1562.
- Hartung, J. (2001). A self-designing rule for clinical trials with arbitrary response variables. *Controlled Clinical Trials*, **22**, 111–116.
- Hartung, J. (2006). Flexible designs by adaptive plans of generalized Pocock– and O'Brien–Fleming–type and by self–designing clinical trials. *Biometrical Journal*, 48, 521–536.
- Hartung, J., Knapp, G. (2004). Improved tests of homogeneity in randomized controlled multi-center trials with binary outcome. Far East Journal of Theoretical Statistics, 13, 101-126.

References

- Hartung, J., Knapp, G. (2006). Repeated confidence intervals in self-designing clinical trials and switching between noninferiority and superiority. *Biometrical Journal*, 48, 697–709.
- Liu, Q., Chi, G. Y. H. (2001). On sample size and inference for two-stage adaptive designs. *Biometrics*, **57**, 172–177.
- Wassmer, G. (2003). Data-driven analysis strategies for proportion studies in adaptive group sequential test designs. *Journal of Biopharmaceutical Statistics*, **13**, 586–603.