Model based design of dose-adapted chemotherapeutic regimen under consideration of individual risk of leucopoenia

M. Scholz, C. Engel, M. Löffler Institute for Medical Informatics, Statistics und Epidemiology University of Leipzig GMDS, 10th-14th September 2006

Background: Intensification of chemotherapy (dose, time) can improve outcome e.g. of lymphoma therapy

Diehl V et al; N Engl J Med 2003 Jun 12;348 (24):2386-95

Problem: Limitation of therapy intensification by increased leucotoxicity despite of growth factor support (G-CSF)

Data from NHL-B trial, Pfreundschuh et al

Problem: Heterogeneity of toxicity

- Dose limitation on the basis of a probably small subpopulation with high toxicity
- Low leucotoxicity correlated with worse tumour control in several neoplasias (e.g. Hodgkin's lymphoma, Mamma-Ca, germ cell tumour)
- Lack of clinical strategies for dose-escalation in cases of low leucotoxicity during therapy or in case of low predicted risk of toxicity

Motivation for Modelling

- Quantification of the contribution of single components of polychemotherapy to overall toxicity in dependence on individual risk factors
- Estimation of dose-toxicity functions
- Estimation of leucotoxic potential of new chemotherapies prior to clinical trials
- Development of therapeutic regimens adapted for toxicity

Human model of granulopoiesis

Schematic compartment equation

Change of compartment size = amplification(influx)-efflux-cell loss Cell loss = k*compartment size

Assumptions for Chemotherapy Effects

- Instantaneous depletion
- First order kinetic
- Reversibility
- Different drugs in combination damage independently
- <u>Consequence</u>: Chemotherapy effect is characterized by a set of drug dose- and cell stage specific toxicity parameters

Model based simulation of the time course of leukocytes under several therapies

Estimated toxicity parameters (young patients < 60 years)

	k StemCells	K Mitotic Precursors	kPostmitotic Precursors
Cyclophosphamide 750 mg/m ² Doxorubicine 50 mg/m ² Vincristine 2 mg	0,1775	0,0979	0,0
Cyclophosphamide 1250 mg/m ² Doxorubicine 35 mg/m ²	0,2139	0,0238	0,0
Etoposide 100 mg/m ²	0,003	0,187	0,0019
Vincristine 2 mg	0,04	0,07	0,0
Procarbacine 100 mg/m ²	0,0063	0,024	0,0015

Model Application: Risk Adapted Dosing for high grade NHL-Patients

- Starting point: CHOP-14 for elderly patients (age>60) from NHL-B trial
- Risk factors for leukopenia
- Assumption: risk factors associated with higher specific toxicity parameters, other parameters constant (e.g. G-CSF response)
- Idea: Homogenize toxicity instead of equal dose

Regimens compared in NHL-B trial

regimen	G-CSF	Cyclophos-	Doxo-	Vin-	Eto-	Pred-	cycles
		phamide	$\operatorname{rubicin}$	$\operatorname{cristine}$	poside	nison	
CHOP-21	-	$750\frac{mg}{m^2}$	$50\frac{mg}{m^2}$	2mg	-		6
		d1	d1	d1		d1-5	d21
CHOP-14		$750 \frac{mg}{m^2}$	$50\frac{mg}{m^2}$	2mg	-		6
	d4-13	d1	d1	d1		d1-5	d14
CHOEP-21	-	$750 \frac{mg}{m^2}$	$50\frac{mg}{m^2}$	2mg	$100\frac{mg}{m^2}$		6
		d1	d1	d1	d1-3	d1-5	d21
CHOEP-14		$750\frac{mg}{m^2}$	$50\frac{mg}{m^2}$	2mg	$100\frac{mg}{m^2}$		6
	d4-13	d1	d1	d1	d1-3	d1-5	d14

Myelotoxic risk factors for elderly patients

- ECOG performance status>1, female gender, LDH>upper norm value
- Comparable odds

Division of Patients into 3 risk groups (red = high myelototoxic risk, blue = medium risk, green = low risk)

Fitting model to data of risk groups

Results of Fitting – Risk specific toxicity parameters for fixed doses of NHL- B trial

parameter	LR	MR	HR
k _{s-CHO}	0.19	0.21	0.22
k _{PGB-CHO}	0.06	0.10	0.2 (>0.1)
k _{MGB-E}	0.004	0.008	0.012

LR=low risk, MR=medium risk, HR=high risk

Dose-Toxicity Functions for Risk Groups (example: stem cell toxicity of cyclophosphamide)

assumption: toxicity ~ dose^{constant}, risk dependent prop. factor

Model predictions for leukopenic characteristics of dose escalated CHOP-14 in dependence on risk group and cyclophosphamide dose

Comparison of leukopenic characteristics for proposed risk-adapted regimens with estimates for clinically approved regimens

regimen	risk	AOC (h)	duration of minimal recovery		minimal leukocyte	
	group		leukopenia $\left(h\right)$	value (cells per $\mu l)$	count (cells per $\mu l)$	
CHOP-14	LR	0.0	0	5900	4000	
CHOP-14	HR	7.4	620	5500	1000	
CHOEP-14	LR	4.6	480	5900	1500	
CHOEP-14	HR	8.2	650	5500	800	
CHOP-21	LR	10.2	1700	4400	2000	
CHOP-21	HR	19.6	2100	4100	700	
CHOEP-21	LR	18.3	2000	4300	700	
CHOEP-21	HR	20.5	2100	4100	600	

- Median estimates
- CHOP-14 for HR was used as limit for toxicity
- CHOEP-14 and CHOEP-21 for HR were assessed by clinicans to be too toxic

Model prediction for risk adapted CHOP-14 therapy: LR with +300mg/m², MR with +150mg/m² etoposide, HR standard CHOP-14

Model predictions for time intensified CHOP regimen Analysis of G-CSF schedules

regimen	risk	AOC (h)	duration of	minimal recovery	minimal leukocyte	
	group		leukopenia $\left(h\right)$	value (cells per $\mu l)$	count (cells per $\mu l)$	
CHOP-14	HR	7.4	620	5500	1000	
(G-CSF d4-13)						
CHOP-11	LR	1.9	360	5400	2600	
(G-CSF d5-10)						
CHOP-12	MR	5.3	580	6700	1500	
(G-CSF d5-11)						
CHOP-12	MR	4.6	660	6600	1800	
(G-CSF d6-11)						

Alternative: Determination of first cycle toxicity as risk marker

Low risk group can tolerate +360mg/m² cyclophosphamide without being more toxic than high risk group (model prediction)

Further Possibilities

- Different baseline regimen (different from CHOP-14, G-CSF d4-13)
- Different criteria for equal toxicity, Redefinition of risk groups
- Combination of pre- and intra-therapeutical risk factors
- Dose reduction

Outlook

- Incorporation of further risk factors (e.g. genetic factors of drug metabolism)
- Other diseases (Br-Ca)
- G-CSF derivatives (Pegfilgrastim)
- Individualized G-CSF scheduling
- Comparison with toxicities of other haematological lineages (thrombopenia, anemia)