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Overview

• Global tests for groups of genes

• Example of flexible linear modeling with GlobalAncova

• Gene Ontology analysis

• How to find significant regions in the GO?



Differential Gene Expression



Differential Gene Expression

Question A:

Which genes differ in expression between biological entities?

→ Single tests for each gene

Question B:

Do functional groups of genes (e.g. pathways, areas in the

genome, Gene Ontology terms) contain genes showing diffe-

rential expression?

→ Global tests for groups of genes



Global Testing

Y : clinical outcome, X : p× n gene expression matrix
(p genes, n samples)

Approach A: H0 : P (Y = 1|X) = P (Y = 2|X)
Random Coefficient Generalized Linear Model; Score test
Goeman et al. (2004)
R package globaltest

Approach B: H0 : P (X|Y = 1) = P (X|Y = 2)
ANCOVA: Comparison of adjusted means; F test
Mansmann, Meister (2005)
R package GlobalAncova

Hypotheses are equivalent by Bayes theorem



GlobalAncova

• Question of interest:
How is gene expression X influenced by phenotype Y ?

• The expectation for gene j follows a linear model
E(xj) = Dβj = Hxj, with H = D(D′D)−1D′

• The design matrix D, e.g. in the two group case and with an
additional covariate z, e.g. sex, may look like this

Int Y z
sample 1
sample 2
sample 3
sample 4

. . .

 1 0 0
1 0 1
1 1 1
1 1 0

. . .



• Residual sum of squares for gene j
εj
′εj, with εj = (I −H)xj



GlobalAncova

• Question of interest:
Do we need the variable Y to explain the data X?
→ Extra sum of squares principle

• Design matrices:
Dfull = (1, Y, z), Dreduced = (1, z)

• Extra residual sum of squares:

SSRextra = SSRreduced − SSRfull, with SSR =
p∑

j=1
εj
′εj

• F statistic:
F = MSRextra/MSRfull



GlobalAncova p-values

Theoretical F distribution p-values
Those are not valid in the case of correlations between genes
or non-normality

Permutation p-values
Sample labels are permuted and a p-value is estimated as the
fraction of corresponding permutation F statistics that are
greater than the observed F statistic

Asymptotic distribution of the test statistic
The test statistic has an asymptotic scaled F distribution
∼ b · F (h1, h2) where b, h1 and h2 depend on eigenvalues of
the p × p gene expression covariance matrix and adequate
differences of n× n model hat matrices



Linear Models

The global ANCOVA approach can easily be extended to a
general linear model framework with various modeling capabilities

design full model reduced model

Various groups ∼ group + cov ∼ cov

Continuous variable ∼ dose + cov ∼ cov

Time trends in groups ∼ group * time + cov ∼ group + time + cov

Gene-gene interaction ∼ gene + cov ∼ cov

Co-expression ∼ group + gene + cov ∼ group + cov

Differential co-expression ∼ group * gene + cov ∼ group + gene + cov

. . . . . . . . .



Example

• Van t’Veer et al. (2002) present a gene signature of 70 genes
to predict recurrence of breast cancer

• We derived 9 cancer related pathways from a literature rese-
arch

• Questions:
Is it possible to relate the signature genes to the pathways?
Are signature genes co-expressed with pathways?

• Explored clinical outcome: development of distant metastases
within 5 years (yes/no)

• For demonstration we pick the cell cycle pathway and signa-
ture gene

”
AL137718“



Example

Is there a correlation between the expression of the signature

gene and the pathway genes?

Full model: ∼ signature.gene

Reduced model: ∼ 1

$ANOVA
SSQ DF MS

Effect 27.24455 31 0.8788564
Error 117.75240 2914 0.0404092

$test.result

F.value 21.74892
p.value 0.00000
p.perm 0.00000

$terms
[1] "(Intercept)" "signature.gene"
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Example

Is there co-expression between signature gene and pathway re-

garding the clinical outcome?

Full model: ∼ metastases + signature.gene

Reduced model: ∼ metastases

$ANOVA
SSQ DF MS

Effect 21.27201 31 0.68619383
Error 116.90453 2883 0.04054961

$test.result

F.value 16.92233
p.value 0.00000
p.perm 0.00000

$terms
[1] "(Intercept)" "metastases" "signature.gene"
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Example

Is there differential co-expression between a signature gene and

a pathway regarding the clinical outcome?

Full model: ∼ metastases * signature.gene

Reduced model: ∼ metastases + signature.gene

$ANOVA
SSQ DF MS

Effect 3.694421 31 0.11917486
Error 113.210105 2852 0.03969499

$test.result

F.value 3.002265e+00
p.value 5.741837e-08
p.perm 5.000000e-04

$terms
[1] "(Intercept)" "metastases" "signature.gene"
[4] "metastases:signature.gene"
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Example

With covariate adjustment

Full model: ∼ metastases * signature.gene + ER

Reduced model: ∼ metastases + signature.gene + ER

$ANOVA
SSQ DF MS

Effect 3.665263 31 0.1182343
Error 107.548645 31 0.0381243

$test.result

F.value 3.101284e+00
p.value 2.031171e-08
p.perm 5.000000e-04

$terms
[1] "(Intercept)" "metastases" "signature.gene"
[4] "ER" "metastases:signature.gene"
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Gene Ontology

• The Gene Ontology (GO) is a
controlled vocabulary to describe
gene and gene product attributes
(http://www.geneontology.org/)

• Three Ontologies: Molecular Function,
Biological Process, Cellular Component

• Relations between GO terms are dis-
played in directed acyclic graphs –
direction from specific to general terms

transcription factor activity

DNA binding

transcription regulator activity

molecular function

nucleic acid binding

Gene Ontology

binding



Gene Ontology

• Genes known to be associated with

some attributes are mapped to corre-

sponding GO terms

• Inheritance: each gene associated with

some term is also mapped to all its

ancestors



Biological Questions

• Provide biological meaning to a list of genes found differen-

tially expressed by means of an over-representation analysis

→ Gene set enrichment approaches

• Find biological coherences regarding differential gene

expression

→ Holistic approaches

• Find essentially enriched terms given the relationship

structure of the GO

→ GO inheritance approaches



Some Methods

Gene set enrichment approaches

• Define a list of differentially expressed genes and score GO
terms using the hypergeometric distribution

• Define a Kolmogorov-Smirnov like running sum test stati-
stic for ranked genes (Subramanian et al. (2005))

Holistic approaches

• Score GO terms directly using GlobalAncova (Mansmann
and Meister (2005)) or globaltest (Goeman et al. (2005))

• Category approach (Gentleman (2005))

GO inheritance approaches

• Decorrelating the GO (Alexa et al. (2006))

• Parent-child approach (Grossmann et al. (2006))



Drawbacks of Gene Set Enrichment

• Loss of information because of two separated steps

• Small but consistent differential expression is not detected

• Dividing genes into differentially and non-differentially expres-

sed genes is artificial

• p-value correction is crucial (correlations between genes,

power of detecting genes, . . .)



How to Find Significant Regions in the GO?

• Since many tests are performed some correction for multiple
testing is required

• There are already various adjustment methods but it would
be desirable to incorporate the structure of the GO

• GO inheritance approaches make use of parent – child rela-
tionships in order to find truly enriched nodes

• Those are modifications of classical gene set enrichment

• Alternative: Find significant regions in the graph based on
the family of global null hypotheses



How to Find Significant Regions in the GO?

• For each of the N nodes of the GO graph consider the null hy-
pothesis of no differential expression and corresponding global
test statistic Fn

• PH0
denotes the distribution of vector (Fn)n=1,...,N under the

family of null hypotheses

• Applying global tests to all nodes yields observed values of
the test statistics F obs

n

• Goal: Find a set of nodes W ⊂ {1, . . . , N} for which

PH0

{
Fw > F obs

w , for all w ∈ W
}

< α



How to Find Significant Regions in the GO?

• First idea to define subset W : Sort nodes by corresponding
observed statistics and find suitable cutoff

• The approach is carried out permutation based
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Outlook

• Define subset W of interesting terms by ordering nodes ac-
cording to the graph structure

• Use full annotation of GO terms or only the ’node-specific’
genes (without genes of respective descendant nodes)

• Use complete annotation but shrink expression values of off-
spring genes before calculating global statistics

• MANOVA approach with additional variable indicating whe-
ther a gene is specific at a node
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