The Use of Generalized P-Values and Generalized Confidence Intervals in Meta-Analysis

Guido Knapp, Bimal K. Sinha, Annette Böckenhoff

Department of Mathematics and Statistics, University of Maryland, Baltimore County Department of Statistics, University of Dortmund

GMDS 2006, Leipzig, September 10-14, 2006

▲ロト ▲団ト ▲ヨト ▲ヨト 三回 のへの

2 Generalized Confidence Interval

3 Model

4 Difference of Means

5 Final Remarks

- combining results from k independent trials
- often published data: $\hat{\theta}_i$ estimate of treatment effect and $\hat{\sigma}_i^2$ estimate of variance of $\hat{\theta}_i$, i = 1, ..., k
- common treatment effect in all the trials: fixed effects model otherwise: random effects model, overall treatment effect, between-trial variance

Introduction	Generalized Confidence Interval	Model	Difference of Means	Final Remarks	References
Motivatio	n				

Hartung, Knapp (2001, Statist. Med.): Effect measure: difference of normal means and assume a common treatment effect in all studies (fixed effects meta–analysis model)

- analysis in the random effects model is almost always better than analysis in the fixed effects model if the fixed effects model is the correct model
- use of an improved variance estimate of the overall treatment effect estimate often leads to more accurate results than use of the 'classical' variance estimate
- however, there is no 'clear' winner of the two random effects approaches in the true fixed effects model (conservative as well as anti-conservative results)

Introduction	Generalized Confidence Interval	Model	Difference of Means	Final Remarks	References
Motivation	I.				

Simulation results for six trials from Hartung, Knapp (2001): Estimated confidence coefficients (in %) for $100\%(1 - \alpha) = 95\%$

Pattern	$\psi_{\textit{FE}}$	$\psi_{\textit{RE}}$	$\psi_{\boldsymbol{q}}$
1	87.57	93.63	93.68
2	86.53	92.90	92.75
3	91.94	94.93	94.17
4	91.78	94.58	94.45
5	94.66	96.08	94.95
6	94.42	96.15	94.87
7	92.01	94.53	93.97
8	90.77	94.53	94.71
9	92.75	95.19	94.35
10	93.95	95.76	94.56
11	92.72	95.08	94.83
12	94.45	96.14	94.96

Generalized CIs in Meta-Analysis, GMDS 2006, September 10-14, 2006

Idea:

• Does the use of generalized confidence intervals improve the analysis in the fixed effects model?

- generalized *p*-value (Tsui, Weehrahandi, 1989, JASA)
- generalized confidence interval (Weerahandi, 1993, JASA)
- Weerahandi (1995): Exact Statistical Methods for Data Analysis. Springer:New York
- application in biometry:
 - exact inference for growth curves (Weerahandi, Berger, 1999, Biometrics)
 - interval estimation and hypothesis testing of intraclass correlation coefficient

(Tian, Cappelleri, 2004, Statist. Med.)

Suppose that $X = (X_1, X_2, ..., X_n)$ forms a random sample from a distribution which depends on the parameters $\psi = (\theta, \nu^T)^T$ where θ is the parameter of interest and ν^T is a vector of nuisance parameters.

A generalized pivot $R(X; x, \theta, \nu)$, where x is an observed value of X, has the following two properties:

- 1. $R(X; x, \theta, \nu)$ has a distribution free of unknown parameters.
- 2. The value of $R(x; x, \theta, \nu)$ is θ .

A generalized pivot $R(X; x, \theta, \nu)$, where x is an observed value of X, has the following two properties:

- 1. $R(X; x, \theta, \nu)$ has a distribution free of unknown parameters.
- 2. The value of $R(x; x, \theta, \nu)$ is θ .

Let R_{α} be the (100α) th percentile of R. Then $(R_{\alpha/2}, R_{1-\alpha/2})$ becomes a 100% $(1-\alpha)$ two-sided generalized confidence interval for θ .

Let us consider k independent trials. For i = 1, ..., k, $\hat{\theta}_i \sim \mathcal{N} \left(\theta_i, \sigma_i^2 \right)$

and

$$\theta_i \sim \mathcal{N}\left(\,\theta \;,\; \tau^2\,
ight)$$

For
$$i = 1, ..., k$$
,

$$\hat{\theta}_i \sim \mathcal{N}\left(\theta, \tau^2 + \sigma_i^2\right)$$

Parameters
$$\psi = (\theta, \nu)$$
, $\nu^T = (\tau^2, \sigma_1^2, \dots, \sigma_k^2)$

⊸∢ ≣ ≯

2

・ロト ・回ト ・ヨト

For i = 1, ..., k, let \bar{X}_i and \bar{Y}_i be sample means, S_{Xi}^2 and S_{Yi}^2 be the sample variances, σ_{Xi}^2 and σ_{Yi}^2 be the population variances, and n_{Xi} and n_{Yi} be the sample sizes for treatment group and control group, respectively.

Let $\boldsymbol{\theta}$ be the difference of means, then

$$D_i = \bar{X}_i - \bar{Y}_i \sim \mathcal{N}\left(\theta, \frac{\sigma_{X_i}^2}{n_{X_i}} + \frac{\sigma_{Y_i}^2}{n_{Y_i}} + \tau^2\right)$$

Suppose $\tau^2 = 0$, that is,

$$D_i = \bar{X}_i - \bar{Y}_i \sim \mathcal{N}\left(\theta, \frac{\sigma_{X_i}^2}{n_{X_i}} + \frac{\sigma_{Y_i}^2}{n_{Y_i}}\right)$$

Then,

$$D_w = \sum_{i=1}^k \frac{w_i D_i}{\sum_j w_j}, \quad w_i = \left(\frac{\sigma_{Xi}^2}{n_{Xi}} + \frac{\sigma_{Yi}^2}{n_{Yi}}\right)^{-1}$$

and

$$Z = rac{D_w - heta}{1/\sqrt{\sum_j w_j}} \sim \mathcal{N}(0,1)$$

-

$$V_{Xi} = (n_{Xi} - 1)S_{Xi}^2 / \sigma_{Xi}^2 \sim \chi_{n_{Xi}-1}^2$$
$$V_{Yi} = (n_{Yi} - 1)S_{Yi}^2 / \sigma_{Yi}^2 \sim \chi_{n_{Yi}-1}^2$$

generalized pivots:

let s_{Xi}^2 and s_{Yi}^2 denote the observed values for S_{Xi}^2 and S_{Yi}^2

$$R_{\sigma_{X_i}^2} = \frac{(n_{X_i} - 1)s_{X_i}^2}{V_{X_i}} \sim \frac{(n_{X_i} - 1)s_{X_i}^2}{\chi_{n_{X_i} - 1}^2}$$
$$R_{\sigma_{Y_i}^2} = \frac{(n_{Y_i} - 1)s_{Y_i}^2}{V_{Y_i}} \sim \frac{(n_{Y_i} - 1)s_{Y_i}^2}{\chi_{n_{Y_i} - 1}^2}$$

Define R_{w_i}

$$R_{w_i} = 1/(R_{\sigma_{X_i}^2}/n_{X_i} + R_{\sigma_{Y_i}^2}/n_{Y_i})$$

and, with d_i the observed value of D_i ,

$$d_{R_w} = \sum_{i=1}^k \frac{R_{w_i} d_i}{\sum_j R_{w_j}}$$

Generalized pivotal quantity

$$R^Z_ heta = d_{R_w} - rac{Z}{\sqrt{\sum_j R_{w_i}}}$$

Generalized CIs in Meta-Analysis, GMDS 2006, September 10-14, 2006

$$R_{ heta}^Z = d_{R_w} - rac{Z}{\sqrt{\sum_j R_{w_i}}}$$

- \bullet the distribution of R^Z_{θ} is independent of any unknown parameters
- the value of R_{θ}^Z is θ as $D_i = d_i$, $S_{Xi}^2 = s_{Xi}^2$, and $S_{Yi}^2 = s_{Yi}^2$, $i = 1, \ldots, k$.

Computing algorithm

Given data $(\hat{\theta}_i, \hat{\sigma}_{Xi}^2, \hat{\sigma}_{Yi}^2, n_{Xi}, n_{Yi})$:

- 1. For i = 1, ..., k, generate $V_{Xi} \sim \chi^2_{n_{Xi}-1}$, $V_{Yi} \sim \chi^2_{n_{Xi}-1}$. Compute $R_{\sigma_{x_{\alpha}}^2}$ and $R_{\sigma_{x_{\alpha}}^2}$
- 2. Calculate R_{w_i} for $i = 1, \ldots, k$, and d_{R_w} .
- 3. Generate $Z \sim \mathcal{N}(0, 1)$. Compute R_{A}^{Z} .
- 4. Repeat step 1-3 a total of *m* times
- 5. Rank the array of R_A^Z .
- 6. Compute the percentiles $(R_{\mu}^{Z}(\alpha/2), R_{\mu}^{Z}(1-\alpha/2)).$

- fixed effects model with k = 6 trials
- effect measure: difference of normal means $\theta = 0$
- calculation of a single generalized confidence interval based on m = 5.000 replications
- all estimated confidence coefficients based on 10.000 simulations runs
- various combinations of sample sizes and within-trial variances

	Generalized Confidence Interval	Model	Difference of Means	Final Remarks	References
Results (1					

- balanced sample sizes $n_{Xi} = n_{Yi} = n$, i = 1, ..., k
- homoscedastic variances $\sigma_{Xi}^2 = \sigma_{Yi}^2 = 1$, $i = 1, \dots, k$

Estimated confidence coefficients (in %) given a nominal confidence coefficient of 95% and average length (in parentheses)

Sample				
size	$\psi_{\textit{FE}}$	$\psi_{\it RE}$	$\psi_{m{q}}$	gen Cl
5	86.62	92.88	93.09	95.63
	(0.90)	(1.07)	(1.23)	(1.17)
10	92.05	94.96	94.30	95.26
	(0.68)	(0.77)	(0.88)	(0.76)
20	93.93	95.68	94.71	95.21
	(0.49)	(0.55)	(0.62)	(0.52)
40	93.84	95.60	94.60	94.66
	(0.35)	(0.39)	(0.45)	(0.36)

Generalized CIs in Meta-Analysis, GMDS 2006, September 10-14, 2006

	Generalized Confidence Interval	Model	Difference of Means	Final Remarks	References
Results (I	I)				

- unbalanced sample sizes $n_{Xi} = n_{Yi} = n_i$, i = 1, ..., k
- heteroscedastic variances $\sigma_{Xi}^2 = \sigma_{Yi}^2 = \sigma_i^2$, $i = 1, \dots, k$

Estimated confidence coefficients (in %) given a nominal confidence coefficient of 95% and average length (in parentheses)

Pattern	$\psi_{\textit{FE}}$	$\psi_{\textit{RE}}$	$\psi_{\boldsymbol{q}}$	gen Cl
1	89.68	94.05	93.86	95.67
	(0.93)	(1.08)	(1.23)	(1.12)
2	90.65	94.66	94.03	95.41
	(0.85)	(1.01)	(1.19)	(0.99)
3	90.98	94.54	93.98	94.74
	(0.76)	(0.89)	(1.02)	(0.86)
4	93.18	95.79	95.25	94.67
	(0.63)	(0.87)	(1.09)	(0.67)

Main Conclusions

- Generalized confidence intervals for the difference of normal means is an efficient procedure in the fixed effects meta-analysis model
- Procedure for the difference of normal means is based on exact distributions

- Extension to random effects model: adapt the proposal in lyer et al. (2004, JASA)
- Other effect measures:
 - no exact normal and χ^2 distribution, approximation needed
 - investigation of the performance is still to be done

- Hartung, J., Knapp, G. (2001). On tests of the overall treatment effect in the meta-analysis with normally distributed responses. *Statistics in Medicine* **20**, 1771-1782.
- Iyer, H., Wand, J., Mathew, T. (2004). Models and confidence intervals for true values in interlaboratory trials. *Journal of the American Statistical Association* **99**, 1060-1071.
- **T**sui, K., Weerahandi, S. (1989). Generalized p-values in significance testing of hypotheses in the presence of nuisance parameters. *Journal of the American Statistical Association* **84**, 602-607.

Weerahandi, S. (1993). Generalized confidence intervals. *Journal of the American Statistical Association* **88**, 899-905.